37 research outputs found

    Role of amyloid-β glycine 33 in oligomerization, toxicity, and neuronal plasticity

    Get PDF
    The aggregation of the amyloid-{beta} (Abeta) peptide plays a pivotal role in the pathogenesis of Alzheimer's disease, as soluble oligomers are intimately linked to neuronal toxicity and inhibition of hippocampal long-term potentiation (LTP). In the C-terminal region of Abeta there are three consecutive GxxxG dimerization motifs, which we could previously demonstrate to play a critical role in the generation of Abeta. Here, we show that glycine 33 (G33) of the central GxxxG interaction motif within the hydrophobic Abeta sequence is important for the aggregation dynamics of the peptide. Abeta peptides with alanine or isoleucine substitutions of G33 displayed an increased propensity to form higher oligomers, which we could attribute to conformational changes. Importantly, the oligomers of G33 variants were much less toxic than Abeta(42) wild type (WT), in vitro and in vivo. Also, whereas Abeta(42) WT is known to inhibit LTP, Abeta(42) G33 variants had lost the potential to inhibit LTP. Our findings reveal that conformational changes induced by G33 substitutions unlink toxicity and oligomerization of Abeta on the molecular level and suggest that G33 is the key amino acid in the toxic activity of Abeta. Thus, a specific toxic conformation of Abeta exists, which represents a promising target for therapeutic interventions

    Pyroglutamate Abeta pathology in APP/PS1KI mice, sporadic and familial Alzheimer’s disease cases

    Get PDF
    The presence of AβpE3 (N-terminal truncated Aβ starting with pyroglutamate) in Alzheimer’s disease (AD) has received considerable attention since the discovery that this peptide represents a dominant fraction of Aβ peptides in senile plaques of AD brains. This was later confirmed by other reports investigating AD and Down’s syndrome postmortem brain tissue. Importantly, AβpE3 has a higher aggregation propensity, and stability, and shows an increased toxicity compared to full-length Aβ. We have recently shown that intraneuronal accumulation of AβpE3 peptides induces a severe neuron loss and an associated neurological phenotype in the TBA2 mouse model for AD. Given the increasing interest in AβpE3, we have generated two novel monoclonal antibodies which were characterized as highly specific for AβpE3 peptides and herein used to analyze plaque deposition in APP/PS1KI mice, an AD model with severe neuron loss and learning deficits. This was compared with the plaque pattern present in brain tissue from sporadic and familial AD cases. Abundant plaques positive for AβpE3 were present in patients with sporadic AD and familial AD including those carrying mutations in APP (arctic and Swedish) and PS1. Interestingly, in APP/PS1KI mice we observed a continuous increase in AβpE3 plaque load with increasing age, while the density for Aβ1-x plaques declined with aging. We therefore assume that, in particular, the peptides starting with position 1 of Aβ are N-truncated as disease progresses, and that, AβpE3 positive plaques are resistant to age-dependent degradation likely due to their high stability and propensity to aggregate

    Toxicity of Alzheimer's disease-associated Aβ peptide is ameliorated in a Drosophila model by tight control of zinc and copper availability

    Full text link
    Abstract Amyloid plaques consisting of aggregated Aβ peptide are a hallmark of Alzheimer's disease. Among the different forms of Aβ, the one of 42aa length (Aβ42) is most aggregation-prone and also the most neurotoxic. We find that eye-specific expression of human Aβ42 in Drosophila results in a degeneration of eye structures that progresses with age. Dietary supplements of zinc or copper ions exacerbate eye damage. Positive effects are seen with zinc/copper chelators, or with elevated expression of MTF-1, a transcription factor with a key role in metal homeostasis and detoxification, or with human or fly transgenes encoding metallothioneins, metal scavenger proteins. These results show that a tight control of zinc and copper availability can minimize cellular damage associated with Aβ42 expression

    Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers

    No full text
    Trace amine-associated receptor 1 (TAAR1) activation by selective endogenous agonists modulates dopaminergic neurotransmission. This results in antipsychotic-like behavior in vivo which might be initiated by an interaction of TAAR1 and dopamine D2L receptor (D2R). Here we analyzed the functional link between TAAR1 and D2R using highly potent and selective TAAR1 agonists, and newly generated tools such as TAAR1 knock-out and TAAR1 overexpressing rats as well as specific anti-rat TAAR1 antibodies. We provide data from co-immunoprecipitation experiments supporting a functional interaction of the two receptors in heterologous cells and in brain tissue. Interaction of TAAR1 with D2R altered the subcellular localization of TAAR1 and increased D2R agonist binding affinity. Using specific beta-arrestin 2 (betaArr2) complementation assays we show that the interaction of TAAR1 with D2R reduced betaArr2 recruitment to D2R. In addition, we report that besides Galphas-protein signaling TAAR1 also signals via betaArr2. In the presence of D2R, cAMP signaling of TAAR1 was reduced while its betaArr2 signaling was enhanced, resulting in reduced GSK3beta activation. These results demonstrate that betaArr2 signaling may be an important pathway for TAAR1 function and that the activation of the TAAR1-D2R complex negatively modulates GSK3beta signaling. Given that patients with schizophrenia or bipolar disorder show increased GSK3beta signaling, such a reduction of GSK3beta signaling triggered by the interaction of D2R with activated TAAR1 further supports TAAR1 as a target for the treatment of psychiatric disorders

    Nuclear translocation uncovers the amyloid peptide Aβ42 as a regulator of gene transcription

    No full text
    Although soluble species of the amyloid-β peptide Aβ42 correlate with disease symptoms in Alzheimer disease, little is known about the biological activities of amyloid-β (Aβ). Here, we show that Aβ peptides varying in lengths from 38 to 43 amino acids are internalized by cultured neuroblastoma cells and can be found in the nucleus. By three independent methods, we demonstrate direct detection of nuclear Aβ42 as follows: (i) biochemical analysis of nuclear fractions; (ii) detection of biotin-labeled Aβ in living cells by confocal laser scanning microscopy; and (iii) transmission electron microscopy of Aβ in cultured cells, as well as brain tissue of wild-type and transgenic APPPS1 mice (overexpression of amyloid precursor protein and presenilin 1 with Swedish and L166P mutations, respectively). Also, this study details a novel role for Aβ42 in nuclear signaling, distinct from the amyloid precursor protein intracellular domain. Chromatin immunoprecipitation showed that Aβ42 specifically interacts as a repressor of gene transcription with LRP1 and KAI1 promoters. By quantitative RT-PCR, we confirmed that mRNA levels of the examined candidate genes were exclusively decreased by the potentially neurotoxic Aβ42 wild-type peptide. Shorter peptides (Aβ38 or Aβ40) and other longer peptides (nontoxic Aβ42 G33A substitution or Aβ43) did not affect mRNA levels. Overall, our data indicate that the nuclear translocation of Aβ42 impacts gene regulation, and deleterious effects of Aβ42 in Alzheimer disease pathogenesis may be influenced by altering the expression profiles of disease-modifying genes

    Alzheimer amyloid Peptide aβ42 regulates gene expression of transcription and growth factors

    No full text
    The pathogenesis of Alzheimer's disease (AD) is characterized by the aggregation of amyloid-{beta} (A{beta}) peptides leading to deposition of senile plaques and a progressive decline of cognitive functions, which currently remains the main criterion for its diagnosis. Robust biomarkers for AD do not yet exist, although changes in the cerebrospinal fluid levels of tau and A{beta} represent promising candidates in addition to brain imaging and genetic risk profiling. Although concentrations of soluble A{beta}42 correlate with symptoms of AD, less is known about the biological activities of A{beta} peptides which are generated from the amyloid-{beta} protein precursor. An unbiased DNA microarray study showed that A{beta}42, at sub-lethal concentrations, specifically increases expression of several genes in neuroblastoma cells, notably the insulin-like growth factor binding proteins 3 and 5 (IGFBP3/5), the transcription regulator inhibitor of DNA binding, and the transcription factor Lim only domain protein 4. Using qRT-PCR, we confirmed that mRNA levels of the identified candidate genes were exclusively increased by the potentially neurotoxic A{beta}42 wild-type peptide, as both the less toxic Aβ40 and a non-toxic substitution peptide A{beta}42 G33A did not affect mRNA levels. In vivo immunohistochemistry revealed a corresponding increase in both hippocampal and cortical IGFBP5 expression in an AD mouse model. Proteomic analyses of human AD cerebrospinal fluid displayed increased in vivo concentrations of IGFBPs. IGFBPs and transcription factors, as identified here, are modulated by soluble A{beta}42 and may represent useful early biomarkers

    Sortilin-related receptor with A-type repeats (SORLA) affects the amyloid precursor protein-dependent stimulation of ERK signaling and adult neurogenesis

    No full text
    SORLA is a sorting receptor that impairs processing of APP to soluble (s) APP and to Ass in cultured neurons, and that is poorly expressed in patients with Alzheimer's disease (AD). Here, we evaluated the consequences of Sorla gene defects on brain anatomy and function using mouse models of receptor deficiency. In line with a protective role for SORLA in APP metabolism, lack of the receptor results in increased amyloidogenic processing of endogenous APP, and in aggravated plaque deposition when introduced into PDAPP mice expressing mutant human APP. Surprisingly, increased levels of sAPP caused by receptor deficiency correlate with profound stimulation of neuronal ERK signaling and with enhanced neurogenesis, providing in vivo support for neurotrophic functions of sAPP. Our data document a role for SORLA not only in control of plaque burden but also in APP-dependent neuronal signaling, and suggest a molecular explanation for increased neurogenesis observed in some AD patients

    Novel APP/Aβ mutation K16N produces highly toxic heteromeric Aβ oligomers

    Get PDF
    Here, we describe a novel missense mutation in the amyloid precursor protein (APP) causing a lysine-to-asparagine substitution at position 687 (APP770; herein, referred to as K16N according to amyloid-{beta} (A{beta}) numbering) resulting in an early onset dementia with an autosomal dominant inheritance pattern. The K16N mutation is located exactly at the {alpha}-secretase cleavage site and influences both APP and A{beta}. First, due to the K16N mutation APP secretion is affected and a higher amount of A{beta} peptides is being produced. Second, A{beta} peptides carrying the K16N mutation are unique in that the peptide itself is not harmful to neuronal cells. Severe toxicity, however, is evident upon equimolar mixture of wt and mutant peptides, mimicking the heterozygous state of the subject. Furthermore, A{beta}42 K16N inhibits fibril formation of A{beta}42 wild-type. Even more, A{beta}42 K16N peptides are protected against clearance activity by the major A{beta}-degrading enzyme neprilysin. Thus the mutation characterized here harbours a combination of risk factors that synergistically may contribute to the development of early onset Alzheimer disease
    corecore