4,238 research outputs found
Abiotic O Levels on Planets around F, G, K, and M Stars: Possible False Positives for Life?
In the search for life on Earth-like planets around other stars, the first
(and likely only) information will come from the spectroscopic characterization
of the planet's atmosphere. Of the countless number of chemical species
terrestrial life produces, only a few have the distinct spectral features and
the necessary atmospheric abundance to be detectable. The easiest of these
species to observe in Earth's atmosphere is O (and its photochemical
byproduct, O). But O can also be produced abiotically by photolysis
of CO, followed by recombination of O atoms with each other. CO is
produced in stoichiometric proportions. Whether O and CO can accumulate
to appreciable concentrations depends on the ratio of far-UV to near-UV
radiation coming from the planet's parent star and on what happens to these
gases when they dissolve in a planet's oceans. Using a one-dimensional
photochemical model, we demonstrate that O derived from CO
photolysis should not accumulate to measurable concentrations on planets around
F- and G-type stars. K-star, and especially M-star planets, however, may build
up O because of the low near-UV flux from their parent stars, in
agreement with some previous studies. On such planets, a 'false positive' for
life is possible if recombination of dissolved CO and O in the oceans is
slow and if other O sinks (e.g., reduced volcanic gases or dissolved
ferrous iron) are small. O, on the other hand, could be detectable at UV
wavelengths ( < 300 nm) for a much broader range of boundary
conditions and stellar types.Comment: 20 pages text, 9 figure
Analysis of standing vertical jumps using a force platform
A force platform analysis of vertical jumping provides an engaging demonstration of the kinematics and dynamics of one-dimensional motion. The height of the jump may be calculated (1) from the flight time of the jump, (2) by applying the impulse–momentum theorem to the force–time curve, and (3) by applying the work–energy theorem to the force-displacement curve
mesas.py v1.0: a flexible Python package for modeling solute transport and transit times using StorAge Selection functions
StorAge Selection (SAS) transport theory has recently emerged as a framework for representing material transport through a control volume. It can be seen as a generalization of transit time theories and lumped-parameter models to allow for arbitrary temporal variability in the rate of material flow in and out of the control volume, and in the transport dynamics. SAS is currently the state-of-the-art approach to interpreting tracer transport. Here, we present mesas.py, a Python package implementing the SAS framework. mesas.py allows SAS functions to be specified using several built-in common distributions, as a piecewise linear cumulative distribution function (CDF), or as a weighted sum of any number of such distributions. The distribution parameters and weights used to combine them can be allowed to vary in time, permitting SAS functions of arbitrary complexity to be specified. mesas.py simulates tracer transport using a novel mass-tracking scheme and can account for first-order reactions and fractionation. We present a number of analytical solutions to the governing equations and use these to validate the code. For a benchmark problem the time-step-averaging approach of the mesas.py implementation provides a reduction in mass balance errors of up to 15 times in some cases compared with a previous implementation of SAS.</p
Hubble Space Telescope Imaging of the Expanding Nebular Remnant of the Recurrent Nova RS Ophiuchi (2006)
We report Hubble Space Telescope imaging obtained 155 days after the 2006
outburst of RS Ophiuchi. We detect extended emission in both [O III] and [Ne V]
lines. In both lines, the remnant has a double ring structure. The E-W
orientation and total extent of these structures (580+-50 AU at d=1.6kpc) is
consistent with that expected due to expansion of emitting regions imaged
earlier in the outburst at radio wavelengths. Expansion at high velocity
appears to have been roughly constant in the E-W direction (v_{exp} = 3200+-300
km/s in the plane of the sky), with tentative evidence of deceleration N-S. We
present a bipolar model of the remnant whose inclination is consistent with
that of the central binary. The true expansion velocities of the polar
components are then v = 5600+-1100 km/s. We suggest that the bipolar morphology
of the remnant results from interaction of the outburst ejecta with a
circumstellar medium that is significantly denser in the equatorial regions of
the binary than at the poles. This is also consistent with observations of
shock evolution in the X-ray and the possible presence of dust in the infrared.
Furthermore, it is in line with models of the shaping of planetary nebulae with
close binary central systems, and also with recent observations relating to the
progenitors of Type Ia supernovae, for which recurrent novae are a proposed
candidate. Our observations also reveal more extended structures to the S and E
of the remnant whose possible origin is briefly discussed.Comment: 13 pages, 2 figures, accepted for publication in ApJ
Development of an Objective Structured Clinical Examination as a Component of Assessment for Initial Board Certification in Anesthesiology.
With its first administration of an Objective Structured Clinical Examination (OSCE) in 2018, the American Board of Anesthesiology (ABA) became the first US medical specialty certifying board to incorporate this type of assessment into its high-stakes certification examination system. The fundamental rationale for the ABA's introduction of the OSCE is to include an assessment that allows candidates for board certification to demonstrate what they actually "do" in domains relevant to clinical practice. Inherent in this rationale is that the OSCE will capture competencies not well assessed in the current written and oral examinations-competencies that will allow the ABA to judge whether a candidate meets the standards expected for board certification more properly. This special article describes the ABA's journey from initial conceptualization through first administration of the OSCE, including the format of the OSCE, the process for scenario development, the standardized patient program that supports OSCE administration, examiner training, scoring, and future assessment of reliability, validity, and impact of the OSCE. This information will be beneficial to both those involved in the initial certification process, such as residency graduate candidates and program directors, and others contemplating the use of high-stakes summative OSCE assessments
Probabilistic models of information retrieval based on measuring the divergence from randomness
We introduce and create a framework for deriving probabilistic models of Information Retrieval. The models are nonparametric models of IR obtained in the language model approach. We derive term-weighting models by measuring the divergence of the actual term distribution from that obtained under a random process. Among the random processes we study the binomial distribution and Bose--Einstein statistics. We define two types of term frequency normalization for tuning term weights in the document--query matching process. The first normalization assumes that documents have the same length and measures the information gain with the observed term once it has been accepted as a good descriptor of the observed document. The second normalization is related to the document length and to other statistics. These two normalization methods are applied to the basic models in succession to obtain weighting formulae. Results show that our framework produces different nonparametric models forming baseline alternatives to the standard tf-idf model
- …