81 research outputs found

    Biosignature False Positives

    Get PDF
    In our search for life - whether within the earliest part of Earth's geologic record, on planets within our solar system such Mars, or especially for extrasolar planets - we must infer the presence of life from its impact on the local or global environment. These "biosignatures," often identified from the known influence of terrestrial organisms on the Earth's atmosphere and surface, could be misdiagnosed when we apply them to alien worlds. The so-called false positives may occur when another process or suite of processes masks or mimics a biosignature. Here, we examine several leading biosignatures, then introduce potential false positives for these signals, and finally discuss methods to discriminate between the two using current and future detection technologies. We conclude that it is the astrobiology community's responsibility to thoroughly exhaust all possibilities before we resort to "life" as an explanation

    A Limited Habitable Zone for Complex Life

    Full text link
    The habitable zone (HZ) is commonly defined as the range of distances from a host star within which liquid water, a key requirement for life, may exist on a planet's surface. Substantially more CO2 than present in Earth's modern atmosphere is required to maintain clement temperatures for most of the HZ, with several bars required at the outer edge. However, most complex aerobic life on Earth is limited by CO2 concentrations of just fractions of a bar. At the same time, most exoplanets in the traditional HZ reside in proximity to M dwarfs, which are more numerous than Sun-like G dwarfs but are predicted to promote greater abundances of gases that can be toxic in the atmospheres of orbiting planets, such as carbon monoxide (CO). Here we show that the HZ for complex aerobic life is likely limited relative to that for microbial life. We use a 1D radiative-convective climate and photochemical models to circumscribe a Habitable Zone for Complex Life (HZCL) based on known toxicity limits for a range of organisms as a proof of concept. We find that for CO2 tolerances of 0.01, 0.1, and 1 bar, the HZCL is only 21%, 32%, and 50% as wide as the conventional HZ for a Sun-like star, and that CO concentrations may limit some complex life throughout the entire HZ of the coolest M dwarfs. These results cast new light on the likely distribution of complex life in the universe and have important ramifications for the search for exoplanet biosignatures and technosignatures.Comment: Revised including additional discussion. Published Gold OA in ApJ. 9 pages, 5 figures, 5 table

    Photochemistry of Anoxic Abiotic Habitable Planet Atmospheres: Impact of New H2_2O Cross-Sections

    Get PDF
    We present a study of the photochemistry of abiotic habitable planets with anoxic CO2_2-N2_2 atmospheres. Such worlds are representative of early Earth, Mars and Venus, and analogous exoplanets. H2_2O photodissociation controls the atmospheric photochemistry of these worlds through production of reactive OH, which dominates the removal of atmospheric trace gases. The near-UV (NUV; >200>200 nm) absorption cross-sections of H2_2O play an outsized role in OH production; these cross-sections were heretofore unmeasured at habitable temperatures (<373<373 K). We present the first measurements of NUV H2_2O absorption at 292292 K, and show it to absorb orders of magnitude more than previously assumed. To explore the implications of these new cross-sections, we employ a photochemical model; we first intercompare it with two others and resolve past literature disagreement. The enhanced OH production due to these higher cross-sections leads to efficient recombination of CO and O2_2, suppressing both by orders of magnitude relative to past predictions and eliminating the low-outgassing "false positive" scenario for O2_2 as a biosignature around solar-type stars. Enhanced [OH] increases rainout of reductants to the surface, relevant to prebiotic chemistry, and may also suppress CH4_4 and H2_2; the latter depends on whether burial of reductants is inhibited on the underlying planet, as is argued for abiotic worlds. While we focus on CO2_2-rich worlds, our results are relevant to anoxic planets in general. Overall, our work advances the state-of-the-art of photochemical models by providing crucial new H2_2O cross-sections and resolving past disagreement in the literature, and suggests that detection of spectrally active trace gases like CO in rocky exoplanet atmospheres may be more challenging than previously considered.Comment: Manuscript (this version) accepted to ApJ. Cross-section data available at https://github.com/sukritranjan/ranjanschwietermanharman2020. Feedback continues to be solicite

    A Re-Appraisal of CO/O2_2 Runaway on Habitable Planets Orbiting Low-Mass Stars

    Full text link
    Efforts to spectrally characterize the atmospheric compositions of temperate terrestrial exoplanets orbiting M-dwarf stars with the James Webb Space Telescope (JWST) are now underway. Key molecular targets of such searches include O2_2 and CO, which are potential indicators of life. Recently, it was proposed that CO2_2 photolysis generates abundant (≳0.1\gtrsim0.1 bar) abiotic O2_2 and CO in the atmospheres of habitable M-dwarf planets with CO2_2-rich atmospheres, constituting a strong false positive for O2_2 as a biosignature and further complicating efforts to use CO as a diagnostic of surface biology. Significantly, this implied that TRAPPIST-1e and TRAPPIST-1f, now under observation with JWST, would abiotically accumulate abundant O2_2 and CO, if habitable. Here, we use a multi-model approach to re-examine photochemical O2_2 and CO accumulation on planets orbiting M-dwarf stars. We show that photochemical O2_2 remains a trace gas on habitable CO2_2-rich M-dwarf planets, with earlier predictions of abundant O2_2 and CO due to an atmospheric model top that was too low to accurately resolve the unusually-high CO2_2 photolysis peak on such worlds. Our work strengthens the case for O2_2 as a biosignature gas, and affirms the importance of CO as a diagnostic of photochemical O2_2 production. However, observationally relevant false positive potential remains, especially for O2_2's photochemical product O3_3, and further work is required to confidently understand O2_2 and O3_3 as biosignature gases on M-dwarf planets.Comment: Submitted to AAS Journals; comments and criticism solicited at [email protected]. 3 Figures, 1 Table in main text; 3Figures, 5 Tables in S

    Identifying Planetary Biosignature Impostors: Spectral Features of CO and O4 Resulting from Abiotic O2/O3 Production

    Full text link
    O2 and O3 have been long considered the most robust individual biosignature gases in a planetary atmosphere, yet multiple mechanisms that may produce them in the absence of life have been described. However, these abiotic planetary mechanisms modify the environment in potentially identifiable ways. Here we briefly discuss two of the most detectable spectral discriminants for abiotic O2/O3: CO and O4. We produce the first explicit self-consistent simulations of these spectral discriminants as they may be seen by JWST. If JWST-NIRISS and/or NIRSpec observe CO (2.35, 4.6 um) in conjunction with CO2 (1.6, 2.0, 4.3 um) in the transmission spectrum of a terrestrial planet it could indicate robust CO2 photolysis and suggest that a future detection of O2 or O3 might not be biogenic. Strong O4 bands seen in transmission at 1.06 and 1.27 um could be diagnostic of a post-runaway O2-dominated atmosphere from massive H-escape. We find that for these false positive scenarios, CO at 2.35 um, CO2 at 2.0 and 4.3 um, and O4 at 1.27 um are all stronger features in transmission than O2/O3 and could be detected with SNRs ≳\gtrsim 3 for an Earth-size planet orbiting a nearby M dwarf star with as few as 10 transits, assuming photon-limited noise. O4 bands could also be sought in UV/VIS/NIR reflected light (at 0.345, 0.36, 0.38, 0.445, 0.475, 0.53, 0.57, 0.63, 1.06, and 1.27 um) by a next generation direct-imaging telescope such as LUVOIR/HDST or HabEx and would indicate an oxygen atmosphere too massive to be biologically produced.Comment: 7 pages, 4 figures, accepted to the Astrophysical Journal Letter

    Photochemistry of Anoxic Abiotic Habitable Planet Atmospheres: Impact of New Hâ‚‚O Cross Sections

    Get PDF
    We present a study of the photochemistry of abiotic habitable planets with anoxic CO₂–N₂ atmospheres. Such worlds are representative of early Earth, Mars, and Venus and analogous exoplanets. Photodissociation of H₂O controls the atmospheric photochemistry of these worlds through production of reactive OH, which dominates the removal of atmospheric trace gases. The near-UV (NUV; >200 nm) absorption cross sections of H₂O play an outsized role in OH production; these cross sections were heretofore unmeasured at habitable temperatures (<373 K). We present the first measurements of NUV H₂O absorption at 292 K and show it to absorb orders of magnitude more than previously assumed. To explore the implications of these new cross sections, we employ a photochemical model; we first intercompare it with two others and resolve past literature disagreement. The enhanced OH production due to these higher cross sections leads to efficient recombination of CO and O₂, suppressing both by orders of magnitude relative to past predictions and eliminating the low-outgassing "false-positive" scenario for O₂ as a biosignature around solar-type stars. Enhanced [OH] increases rainout of reductants to the surface, relevant to prebiotic chemistry, and may also suppress CH₄ and H₂; the latter depends on whether burial of reductants is inhibited on the underlying planet, as is argued for abiotic worlds. While we focus on CO₂-rich worlds, our results are relevant to anoxic planets in general. Overall, our work advances the state of the art of photochemical models by providing crucial new H₂O cross sections and resolving past disagreement in the literature and suggests that detection of spectrally active trace gases like CO in rocky exoplanet atmospheres may be more challenging than previously considered

    Rethinking CO Antibiosignatures in the Search for Life Beyond the Solar System

    Get PDF
    Some atmospheric gases have been proposed as counter indicators to the presence of life on an exoplanet if remotely detectable at sufficient abundance (i.e., antibiosignatures), informing the search for biosignatures and potentially fingerprinting uninhabited habitats. However, the quantitative extent to which putative antibiosignatures could exist in the atmospheres of inhabited planets is not well understood. The most commonly referenced potential antibiosignature is CO, because it represents a source of free energy and reduced carbon that is readily exploited by life on Earth and is thus often assumed to accumulate only in the absence of life. Yet, biospheres actively produce CO through biomass burning, photooxidation processes, and release of gases that are photochemically converted into CO in the atmosphere. We demonstrate with a 1D ecosphere-atmosphere model that reducing biospheres can maintain CO levels of approximately 100 ppmv (parts per million by volume) even at low H2 fluxes due to the impact of hybrid photosynthetic ecosystems. Additionally, we show that photochemistry around M dwarf stars is particularly favorable for the buildup of CO, with plausible concentrations for inhabited, oxygen-rich planets extending from hundreds of ppm to several percent. Since CH4 buildup is also favored on these worlds, and because O2 and O3 are likely not detectable with the James Webb Space Telescope, the presence of high CO (greater than 100 ppmv) may discriminate between oxygen-rich and reducing biospheres with near-future transmission observations. These results suggest that spectroscopic detection of CO can be compatible with the presence of life and that a comprehensive contextual assessment is required to validate the significance of potential antibiosignatures
    • …
    corecore