3,134 research outputs found

    Inertial gyroscope system application considerations

    Get PDF
    Criteria for designing inertial gyroscope system

    Cobalt base superalloy has outstanding properties up to 1478 K (2200 F)

    Get PDF
    Alloy VM-103 is especially promising for use in applications requiring short time exposure to very high temperatures. Its properties over broad range of temperatures are superior to those of comparable commercial wrought cobalt-base superalloys, L-605 and HS-188

    Burst avalanches in solvable models of fibrous materials

    Full text link
    We review limiting models for fracture in bundles of fibers, with statistically distributed thresholds for breakdown of individual fibers. During the breakdown process, avalanches consisting of simultaneous rupture of several fibers occur, and the distribution D(Δ)D(\Delta) of the magnitude Δ\Delta of such avalanches is the central characteristics in our analysis. For a bundle of parallel fibers two limiting models of load sharing are studied and contrasted: the global model in which the load carried by a bursting fiber is equally distributed among the surviving members, and the local model in which the nearest surviving neighbors take up the load. For the global model we investigate in particular the conditions on the threshold distribution which would lead to anomalous behavior, i.e. deviations from the asymptotics D(Δ)∼Δ−5/2D(\Delta) \sim \Delta^{-5/2}, known to be the generic behavior. For the local model no universal power-law asymptotics exists, but we show for a particular threshold distribution how the avalanche distribution can nevertheless be explicitly calculated in the large-bundle limit.Comment: 28 pages, RevTeX, 3 Postscript figure

    The Post-Common Envelope and Pre-Cataclysmic Binary PG 1224+309

    Get PDF
    We have made extensive spectroscopic and photometric observations of PG 1224+309, a close binary containing a DA white dwarf primary and an M4+ secondary. The H alpha line is in emission due to irradiation of the M-star by the hot white dwarf and is seen to vary around the orbit. From the radial velocities of the H alpha line we derive a period of P = 0.258689 +/- 0.000004 days and a semi-amplitude of K_Halpha = 160 +/- 8 km/s. We estimate a correction Delta_K = 21 +/- 2 km/s, where K_M = K_Halpha + Delta_K. Radial velocity variations of the white dwarf reveal a semi-amplitude of K_WD = 112 +/- 14 km/s. The blue spectrum of the white dwarf is well fit by a synthetic spectrum having T_eff = 29,300 K and log(g) = 7.38. The white dwarf contributes 97% of the light at 4500 Angstroms and virtually all of the light blueward of 3800 Angstroms. No eclipses are observed. The mass inferred for the white dwarf depends on the assumed mass of the thin residual hydrogen envelope: 0.40 < M_WD < 0.45 solar masses for hydrogen envelope masses of 0 < M_H < 4.0E-4 solar masses. We argue that the mass of the white dwarf is closer to 0.45 solar masses, hence it appears that the white dwarf has a relatively large residual hydrogen envelope. The mass of the M-star is then M_M = 0.28 +/- 0.05 solar masses, and the inclination is i = 77 +/- 7 degrees. We discuss briefly how PG 1224+309 may be used to constrain theories of close binary star evolution, and the past and future histories of PG 1224+309 itself. The star is both a ``post-common envelope'' star and a ``pre-cataclysmic binary'' star. Mass transfer by Roche-lobe overflow should commence in about 10 Gyr.Comment: 17 pages, 8 figures, AAS LaTeX, to appear in AJ, March 199

    Bounds for the time to failure of hierarchical systems of fracture

    Full text link
    For years limited Monte Carlo simulations have led to the suspicion that the time to failure of hierarchically organized load-transfer models of fracture is non-zero for sets of infinite size. This fact could have a profound significance in engineering practice and also in geophysics. Here, we develop an exact algebraic iterative method to compute the successive time intervals for individual breaking in systems of height nn in terms of the information calculated in the previous height n−1n-1. As a byproduct of this method, rigorous lower and higher bounds for the time to failure of very large systems are easily obtained. The asymptotic behavior of the resulting lower bound leads to the evidence that the above mentioned suspicion is actually true.Comment: Final version. To appear in Phys. Rev. E, Feb 199

    Parametric coupling between macroscopic quantum resonators

    Full text link
    Time-dependent linear coupling between macroscopic quantum resonator modes generates both a parametric amplification also known as a {}"squeezing operation" and a beam splitter operation, analogous to quantum optical systems. These operations, when applied properly, can robustly generate entanglement and squeezing for the quantum resonator modes. Here, we present such coupling schemes between a nanomechanical resonator and a superconducting electrical resonator using applied microwave voltages as well as between two superconducting lumped-element electrical resonators using a r.f. SQUID-mediated tunable coupler. By calculating the logarithmic negativity of the partially transposed density matrix, we quantitatively study the entanglement generated at finite temperatures. We also show that characterization of the nanomechanical resonator state after the quantum operations can be achieved by detecting the electrical resonator only. Thus, one of the electrical resonator modes can act as a probe to measure the entanglement of the coupled systems and the degree of squeezing for the other resonator mode.Comment: 15 pages, 4 figures, submitte

    Holographic multiverse and the measure problem

    Full text link
    We discuss the duality, conjectured in earlier work, between the wave function of the multiverse and a 3D Euclidean theory on the future boundary of spacetime. In particular, we discuss the choice of the boundary metric and the relation between the UV cutoff scale xi on the boundary and the hypersurfaces Sigma on which the wave function is defined in the bulk. We propose that in the limit of xi going to 0 these hypersurfaces should be used as cutoff surfaces in the multiverse measure. Furthermore, we argue that in the inflating regions of spacetime with a slowly varying Hubble rate H the hypersurfaces Sigma are surfaces of constant comoving apparent horizon (CAH). Finally, we introduce a measure prescription (called CAH+) which appears to have no pathological features and coincides with the constant CAH cutoff in regions of slowly varying H.Comment: A minor change: the discussion of unitarity on p.9 is clarifie

    Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media

    Full text link
    Numerical micropermeametry is performed on three dimensional porous samples having a linear size of approximately 3 mm and a resolution of 7.5 μ\mum. One of the samples is a microtomographic image of Fontainebleau sandstone. Two of the samples are stochastic reconstructions with the same porosity, specific surface area, and two-point correlation function as the Fontainebleau sample. The fourth sample is a physical model which mimics the processes of sedimentation, compaction and diagenesis of Fontainebleau sandstone. The permeabilities of these samples are determined by numerically solving at low Reynolds numbers the appropriate Stokes equations in the pore spaces of the samples. The physical diagenesis model appears to reproduce the permeability of the real sandstone sample quite accurately, while the permeabilities of the stochastic reconstructions deviate from the latter by at least an order of magnitude. This finding confirms earlier qualitative predictions based on local porosity theory. Two numerical algorithms were used in these simulations. One is based on the lattice-Boltzmann method, and the other on conventional finite-difference techniques. The accuracy of these two methods is discussed and compared, also with experiment.Comment: to appear in: Phys.Rev.E (2002), 32 pages, Latex, 1 Figur
    • …
    corecore