27 research outputs found

    Clinically Actionable Hypercholesterolemia and Hypertriglyceridemia in Children with Nonalcoholic Fatty Liver Disease

    Get PDF
    OBJECTIVE: To determine the percentage of children with nonalcoholic fatty liver disease (NAFLD) in whom intervention for low-density lipoprotein cholesterol or triglycerides was indicated based on National Heart, Lung, and Blood Institute guidelines. STUDY DESIGN: This multicenter, longitudinal cohort study included children with NAFLD enrolled in the National Institute of Diabetes and Digestive and Kidney Diseases Nonalcoholic Steatohepatitis Clinical Research Network. Fasting lipid profiles were obtained at diagnosis. Standardized dietary recommendations were provided. After 1 year, lipid profiles were repeated and interpreted according to National Heart, Lung, and Blood Institute Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction. Main outcomes were meeting criteria for clinically actionable dyslipidemia at baseline, and either achieving lipid goal at follow-up or meeting criteria for ongoing intervention. RESULTS: There were 585 participants, with a mean age of 12.8 years. The prevalence of children warranting intervention for low-density lipoprotein cholesterol at baseline was 14%. After 1 year of recommended dietary changes, 51% achieved goal low-density lipoprotein cholesterol, 27% qualified for enhanced dietary and lifestyle modifications, and 22% met criteria for pharmacologic intervention. Elevated triglycerides were more prevalent, with 51% meeting criteria for intervention. At 1 year, 25% achieved goal triglycerides with diet and lifestyle changes, 38% met criteria for advanced dietary modifications, and 37% qualified for antihyperlipidemic medications. CONCLUSIONS: More than one-half of children with NAFLD met intervention thresholds for dyslipidemia. Based on the burden of clinically relevant dyslipidemia, lipid screening in children with NAFLD is warranted. Clinicians caring for children with NAFLD should be familiar with lipid management

    Domain-and species-specific monoclonal antibodies recognize the Von Willebrand Factor-C domain of CCN5

    Get PDF
    The CCN family of proteins typically consists of four distinct peptide domains: an insulin-like growth factor binding protein-type (IGFBP) domain, a Von Willebrand Factor C (VWC) domain, a thrombospondin type 1 repeat (TSP1) domain, and a carboxy-terminal (CT) domain. The six family members participate in many processes, including proliferation, motility, cell-matrix signaling, angiogenesis, and wound healing. Accumulating evidence suggests that truncated and alternatively spliced isoforms are responsible for the diverse functions of CCN proteins in both normal and pathophysiologic states. Analysis of the properties and functions of individual CCN domains further corroborates this idea. CCN5 is unique among the CCN family members because it lacks the CT-domain. To dissect the domain functions of CCN5, we are developing domain-specific mouse monoclonal antibodies. Monoclonal antibodies have the advantages of great specificity, reproducibility, and ease of long-term storage and production. In this communication, we injected mixtures of GST-fused rat CCN5 domains into mice to generate monoclonal antibodies. To identify the domains recognized by the antibodies, we constructed serial expression plasmids that express dual-tagged rat CCN5 domains. All of the monoclonal antibodies generated to date recognize the VWC domain, indicating it is the most highly immunogenic of the CCN5 domains. We characterized one particular clone, 22H10, and found that it recognizes mouse and rat CCN5, but not human recombinant CCN5. Purified 22H10 was successfully applied in Western Blot analysis, immunofluorescence of cultured cells and tissues, and immunoprecipitation, indicating that it will be a useful tool for domain analysis and studies of mouse-human tumor models

    In Children with Nonalcoholic Fatty Liver Disease, Zone 1 Steatosis is Associated with Advanced Fibrosis

    Get PDF
    Background & Aims Focal zone 1 steatosis, although rare in adults with nonalcoholic fatty liver disease (NAFLD), does occur in children with NAFLD. We investigated whether focal zone 1 steatosis and focal zone 3 steatosis are distinct subphenotypes of pediatric NAFLD. We aimed to determine associations between the zonality of steatosis and demographic, clinical, and histologic features in children with NAFLD. Methods We performed a cross-sectional study of baseline data from 813 children (age <18 years; mean age, 12.8 ± 2.7 years). The subjects had biopsy-proven NAFLD and were enrolled in the Nonalcoholic Steatohepatitis Clinical Research Network. Liver histology was reviewed using the Nonalcoholic Steatohepatitis Clinical Research Network scoring system. Results Zone 1 steatosis was present in 18% of children with NAFLD (n = 146) and zone 3 steatosis was present in 32% (n = 244). Children with zone 1 steatosis were significantly younger (10 vs 14 years; P < .001) and a significantly higher proportion had any fibrosis (81% vs 51%; P < .001) or advanced fibrosis (13% vs 5%; P < .001) compared with children with zone 3 steatosis. In contrast, children with zone 3 steatosis were significantly more likely to have steatohepatitis (30% vs 6% in children with zone 1 steatosis; P < .001). Conclusions Children with zone 1 or zone 3 distribution of steatosis have an important subphenotype of pediatric NAFLD. Children with zone 1 steatosis are more likely to have advanced fibrosis and children with zone 3 steatosis are more likely to have steatohepatitis. To achieve a comprehensive understanding of pediatric NAFLD, studies of pathophysiology, natural history, and response to treatment should account for the zonality of steatosis

    Correlations vs connectivity in R-charge

    Get PDF
    The holographic relation between quantum correlations and connectivity of spacetime is explored for single R-charged AdS5_5 black holes and their half-BPS limits (superstars). In a two boundary set-up, the wormhole between both universes reduces to a designable and computable quantum mechanical correlation between the dual microscopic degrees of freedom in the BPS limit. This quantum connectivity is seen as a naked singularity by a single sided observer. In a single boundary set-up, as a small step towards the description of entangled black holes, we describe quantum teleportation between two labs in different locations of the transverse 5-sphere using entangled gravitons in a reference state that provides a classical channel between both labs.Comment: 53 pages + appendices, 29 figures v2: few corrections and added a conclusion sectio
    corecore