35 research outputs found
Dual Inhibition Of Sodium-Mediated Proton And Calcium Efflux Triggers Non-Apoptotic Cell Death In Malignant Gliomas
Malignant glioma cells maintain an elevated intracellular pH (pHi) within hypoxic–ischemic tumormicroenvironments through persistent activation of sodium–proton transport (McLean et al., 2000). Amiloride has been reported to selectively kill human malignant glioma cell lines but not primary astrocytes (Hegde et al., 2004). While amiloride reduces pHi of malignant gliomas by inhibiting isoform 1 of sodium–proton exchange (NHE1), direct acidification was shown to be cytostatic rather than cytotoxic. At cytotoxic concentrations, amiloride has multiple drug targets including inhibition of NHE1 and sodium–calciumexchange. Amiloride\u27s glioma cytotoxicity can be explained, at least in part, by dual inhibition of NHE1 and of Na+- dependent calcium efflux by isoform 1.1 of the sodium–calcium exchanger (NCX1.1) , which increases [Ca2+]i and initiates glioma cell demise. As a result of persistent NHE1 activity, cytosolic free levels of sodium ([Na+]i) in U87 and C6 glioma cells are elevated 3-fold, as compared with normal astrocytes. Basal cytosolic free calciumlevels ([Ca2+]i) also are increased 5-fold. 2′, 4′-dichlorobenzamil (DCB) inhibits the sodium-dependent calcium transporter (NCX1.1) much more potently than NHE1. DCB was employed in a concentration-dependent fashion in glioma cells to selectively inhibit the forwardmode of NCX1.1 at ≤1 μM, while dually inhibiting bothNHE1 and NCX1.1 at ≥20 μM. DCB (1 μM) was not cytotoxic to glioma cells,while DCB (20 μM) further increased basal elevated levels of [Ca2+]i in glioma cells thatwas followed by cell demise. Cariporide and SEA0400 are more selective inhibitors of NHE1 and NCX1.1 than amiloride or DCB, respectively. Individually, Cariporide and SEA0400 are not cytotoxic, but in combination induced glioma cell death. Like amiloride, the combination of Cariporide and SEA0400 produced glioma cell death in the absence of demonstrable caspase activation
Analysis of Maternal-Offspring HLA Compatibility, Parent-of-Origin Effects, and Noninherited Maternal Antigen Effects for HLA-DRB1 in Systemic Lupus Erythematosus
Objective. Genetic susceptibility to systemic lupus erythematosus (SLE) is well established, with the HLA class II DRB1 and DQB1 loci demonstrating the strongest association. However, HLA may also influence SLE through novel biologic mechanisms in addition to genetic transmission of risk alleles. Evidence for increased maternal-offspring HLA class II compatibility in SLE and differences in maternal versus paternal transmission rates (parent-of-origin effects) and nontransmission rates (noninherited maternal antigen [NIMA] effects) in other autoimmune diseases have been reported. Thus, we investigated maternal-offspring HLA compatibility, parent-of-origin effects, and NIMA effects at DRB1 in SLE.
Methods. The cohort comprised 707 SLE families and 188 independent healthy maternal-offspring pairs (total of 2,497 individuals). Family-based association tests were conducted to compare transmitted versus nontransmitted alleles (transmission disequilibrium test) and both maternally versus paternally transmitted (parent-of-origin) and nontransmitted alleles (using the chi-square test of heterogeneity). Analyses were stratified according to the sex of the offspring. Maternally affected offspring DRB1 compatibility in SLE families was compared with paternally affected offspring compatibility and with independent control maternal-offspring pairs (using Fisher's test) and was restricted to male and nulligravid female offspring with SLE.
Results. As expected, DRB1 was associated with SLE (P < 1 x 10(-4)). However, mothers of children with SLE had similar transmission and nontransmission frequencies for DRB1 alleles when compared with fathers, including those for the known SLE risk alleles HLA-DRB1*0301, *1501, and *0801. No association between maternal-offspring compatibility and SLE was observed.
Conclusion. Maternal-offspring HLA compatibility, parent-of-origin effects, and NIMA effects at DRB1 are unlikely to play a role in SLE.Transplantation and autoimmunit
Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus
Objective: Systemic lupus erythematosus is a clinically heterogeneous autoimmune disease. A number of genetic loci that increase lupus susceptibility have been established. This study examines if these genetic loci also contribute to the clinical heterogeneity in lupus. Materials and methods: 4001 European-derived, 547 Hispanic, 1590 African-American and 1191 Asian lupus patients were genotyped for 16 confirmed lupus susceptibility loci. Ancestry informative markers were genotyped to calculate and adjust for admixture. The association between the risk allele in each locus was determined and compared in patients with and without the various clinical manifestations included in the ACR criteria. Results: Renal disorder was significantly correlated with the lupus risk allele in ITGAM (p=5.0 Ă— 10-6, OR 1.25, 95% CI 1.12 to 1.35) and in TNFSF4 (p=0.0013, OR 1.14, 95% CI 1.07 to 1.25). Other significant findings include the association between risk alleles in FCGR2A and malar rash (p=0.0031, OR 1.11, 95% CI 1.17 to 1.33), ITGAM and discoid rash (p=0.0020, OR 1.20, 95% CI 1.06 to 1.33), STAT4 and protection from oral ulcers (p=0.0027, OR 0.89, 95% CI 0.83 to 0.96) and IL21 and haematological disorder (p=0.0027, OR 1.13, 95% CI 1.04 to 1.22). All these associations are significant with a false discovery rate of and lt;0.05 and pass the significance threshold using Bonferroni correction for multiple testing. Conclusion: Significant associations were found between lupus clinical manifestations and the FCGR2A, ITGAM, STAT4, TNSF4 and IL21 genes. The findings suggest that genetic profiling might be a useful tool to predict disease manifestations in lupus patients in the future
Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus
Objective: Systemic lupus erythematosus is a clinically heterogeneous autoimmune disease. A number of genetic loci that increase lupus susceptibility have been established. This study examines if these genetic loci also contribute to the clinical heterogeneity in lupus. Materials and methods: 4001 European-derived, 547 Hispanic, 1590 African-American and 1191 Asian lupus patients were genotyped for 16 confirmed lupus susceptibility loci. Ancestry informative markers were genotyped to calculate and adjust for admixture. The association between the risk allele in each locus was determined and compared in patients with and without the various clinical manifestations included in the ACR criteria. Results: Renal disorder was significantly correlated with the lupus risk allele in ITGAM (p=5.0 Ă— 10-6, OR 1.25, 95% CI 1.12 to 1.35) and in TNFSF4 (p=0.0013, OR 1.14, 95% CI 1.07 to 1.25). Other significant findings include the association between risk alleles in FCGR2A and malar rash (p=0.0031, OR 1.11, 95% CI 1.17 to 1.33), ITGAM and discoid rash (p=0.0020, OR 1.20, 95% CI 1.06 to 1.33), STAT4 and protection from oral ulcers (p=0.0027, OR 0.89, 95% CI 0.83 to 0.96) and IL21 and haematological disorder (p=0.0027, OR 1.13, 95% CI 1.04 to 1.22). All these associations are significant with a false discovery rate of and lt;0.05 and pass the significance threshold using Bonferroni correction for multiple testing. Conclusion: Significant associations were found between lupus clinical manifestations and the FCGR2A, ITGAM, STAT4, TNSF4 and IL21 genes. The findings suggest that genetic profiling might be a useful tool to predict disease manifestations in lupus patients in the future