360 research outputs found

    Mixed Reality Game Using Bluetooth Beacons for Exhibitions

    Get PDF

    Direct thrust measurement of a permanent magnet helicon double layer thruster

    No full text
    Direct thrust measurements of a permanent magnet helicon double layer thruster have been made using a pendulum thrust balance and a high sensitivity laser displacement sensor. At the low pressures used (0.08 Pa) an ion beam is detected downstream of the thruster exit, and a maximum thrust force of about 3 mN is measured for argon with an rf input power of about 700 W. The measured thrust is proportional to the upstream plasma density and is in good agreement with the theoretical thrust based on the maximum upstream electron pressure

    Direct application of plasmid DNA containing type I interferon transgenes to vaginal mucosa inhibits HSV-2 mediated mortality

    Get PDF
    The application of naked DNA containing type I interferon (IFN) transgenes is a promising potential therapeutic approach for controlling chronic viral infections. Herein, we detail the application of this approach that has been extensively used to restrain ocular HSV-1 infection, for antagonizing vaginal HSV-2 infection. We show that application of IFN-α1, -α5, and –β transgenes to vaginal mouse lumen 24 hours prior to HSV-2 infection reduces HSV-2 mediated mortality by 2.5 to 3-fold. However, other type I IFN transgenes (IFN- α4, -α5, -α6, and –α9) are non effectual against HSV-2. We further show that the efficacy of IFN-α1 transgene treatment is independent of CD4+ T lymphocytes. However, in mice depleted of CD8+ T lymphocytes, the ability of IFN-α1 transgene treatment to antagonize HSV-2 was lost

    Aprepitant for cough in lung cancer: a randomised placebo-controlled trial and mechanistic insights

    Get PDF
    RATIONALE: Effective cough treatments are a significant unmet need in lung cancer patients. Aprepitant is a licensed treatment for nausea and vomiting, which blocks substance P activation of Neurokinin 1 (NK-1) receptors, a mechanism also implicated in cough. OBJECTIVE: To assess aprepitant in lung cancer patients with cough and evaluate mechanisms in vagal nerve tissue. METHODS: Randomised double-blind crossover trial of lung cancer patients with bothersome cough. They received three days of aprepitant or matched placebo; following a three day wash out, patients crossed to the alternative treatment. The primary endpoint was awake cough frequency measured at screening and day 3 of each treatment; secondary endpoints included patient-reported outcomes. In vitro, the depolarization of isolated guinea pig and human vagus nerve sections in grease gap recording chambers, indicative of sensory nerve activation, was measured to evaluate mechanism. MEASUREMENTS AND MAIN RESULTS: Twenty lung cancer patients enrolled, mean age 66years (±7.7), 60% female, 80% non-small cell cancer, 50% advanced stage and 55% WHO performance status 1. Cough frequency improved with aprepitant, reducing by 22.2%(95%CI 2.8-37.7%) over placebo whilst awake (p=0.03), 30.3%(95%CI 12.7-44.3) over 24hours (p=0.002) and 59.8%(95%CI 15.1-86.0) during sleep (p=0.081). Patient-reported outcomes all significantly improved. Substance P depolarised both guinea pig and human vagus nerve. Aprepitant significantly inhibited substance P induced depolarisation by 78% in guinea pig (p=0.0145) and 94% in human vagus (p=0.0145). DISCUSSION: Substance P activation of NK-1 receptors appears to be an important mechanism driving cough in lung cancer, and NK-1 antagonists show promise as anti-tussive therapies. Clinical trial registration available at www.http://www.isrctn.com/, ID: ISRCTN16200035

    Does an interactive trust-enhanced electronic consent improve patient experiences when asked to share their health records for research? A randomized trial

    Get PDF
    Objective In the context of patient broad consent for future research uses of their identifiable health record data, we compare the effectiveness of interactive trust-enhanced e-consent, interactive-only e-consent, and standard e-consent (no interactivity, no trust enhancement). Materials and Methods A randomized trial was conducted involving adult participants making a scheduled primary care visit. Participants were randomized into 1 of the 3 e-consent conditions. Primary outcomes were patient-reported satisfaction with and subjective understanding of the e-consent. Secondary outcomes were objective knowledge, perceived voluntariness, trust in medical researchers, consent decision, and time spent using the application. Outcomes were assessed immediately after use of the e-consent and at 1-week follow-up. Results Across all conditions, participants (N = 734) reported moderate-to-high satisfaction with consent (mean 4.3 of 5) and subjective understanding (79.1 of 100). Over 94% agreed to share their health record data. No statistically significant differences in outcomes were observed between conditions. Irrespective of condition, black participants and those with lower education reported lower satisfaction, subjective understanding, knowledge, perceived voluntariness, and trust in medical researchers, as well as spent more time consenting. Conclusions A large majority of patients were willing to share their identifiable health records for research, and they reported positive consent experiences. However, incorporating optional additional information and messages designed to enhance trust in the research process did not improve consent experiences. To improve poorer consent experiences of racial and ethnic minority participants and those with lower education, other novel consent technologies and processes may be valuable

    Prospects for improving the representation of coastal and shelf seas in global ocean models

    Get PDF
    Accurately representing coastal and shelf seas in global ocean models represents one of the grand challenges of Earth system science. They are regions of immense societal importance through the goods and services they provide, hazards they pose and their role in global-scale processes and cycles, e.g. carbon fluxes and dense water formation. However, they are poorly represented in the current generation of global ocean models. In this contribution, we aim to briefly characterise the problem, and then to identify the important physical processes, and their scales, needed to address this issue in the context of the options available to resolve these scales globally and the evolving computational landscape. We find barotropic and topographic scales are well resolved by the current state-of-the-art model resolutions, e.g. nominal 1∕12°, and still reasonably well resolved at 1∕4°; here, the focus is on process representation. We identify tides, vertical coordinates, river inflows and mixing schemes as four areas where modelling approaches can readily be transferred from regional to global modelling with substantial benefit. In terms of finer-scale processes, we find that a 1∕12° global model resolves the first baroclinic Rossby radius for only  ∼ 8% of regions  < 500m deep, but this increases to  ∼ 70% for a 1∕72° model, so resolving scales globally requires substantially finer resolution than the current state of the art. We quantify the benefit of improved resolution and process representation using 1∕12° global- and basin-scale northern North Atlantic nucleus for a European model of the ocean (NEMO) simulations; the latter includes tides and a k-ε vertical mixing scheme. These are compared with global stratification observations and 19 models from CMIP5. In terms of correlation and basin-wide rms error, the high-resolution models outperform all these CMIP5 models. The model with tides shows improved seasonal cycles compared to the high-resolution model without tides. The benefits of resolution are particularly apparent in eastern boundary upwelling zones. To explore the balance between the size of a globally refined model and that of multiscale modelling options (e.g. finite element, finite volume or a two-way nesting approach), we consider a simple scale analysis and a conceptual grid refining approach. We put this analysis in the context of evolving computer systems, discussing model turnaround time, scalability and resource costs. Using a simple cost model compared to a reference configuration (taken to be a 1∕4° global model in 2011) and the increasing performance of the UK Research Councils' computer facility, we estimate an unstructured mesh multiscale approach, resolving process scales down to 1.5km, would use a comparable share of the computer resource by 2021, the two-way nested multiscale approach by 2022, and a 1∕72° global model by 2026. However, we also note that a 1∕12° global model would not have a comparable computational cost to a 1° global model in 2017 until 2027. Hence, we conclude that for computationally expensive models (e.g. for oceanographic research or operational oceanography), resolving scales to  ∼ 1.5km would be routinely practical in about a decade given substantial effort on numerical and computational development. For complex Earth system models, this extends to about 2 decades, suggesting the focus here needs to be on improved process parameterisation to meet these challenges

    Biochemistry Instructors’ Views toward Developing and Assessing Visual Literacy in Their Courses

    Get PDF
    Biochemistry instructors are inundated with various representations from which to choose to depict biochemical phenomena. Because of the immense amount of visual know-how needed to be an expert biochemist in the 21st century, there have been calls for instructors to develop biochemistry students’ visual literacy. However, visual literacy has multiple aspects, and determining which area to develop can be quite daunting. Therefore, the goals of this study were to determine what visual literacy skills biochemistry instructors deem to be most important and how instructors develop and assess visual literacy skills in their biochemistry courses. In order to address these goals, a needs assessment was administered to a national sample of biochemistry faculty at four-year colleges and universities. Based on the results of the survey, a cluster analysis was conducted to group instructors into categories based on how they intended to develop visual literacy in their courses. A misalignment was found between the visual literacy skills that were most important and how instructors developed visual literacy. In addition, the majority of instructors assumed these skills on assessments rather than explicitly testing them. Implications focus on the need for better measures to assess visual literacy skills directly

    Representative Sequencing: Unbiased Sampling of Solid Tumor Tissue

    Get PDF
    Although thousands of solid tumors have been sequenced to date, a fundamental under-sampling bias is inherent in current methodologies. This is caused by a tissue sample input of fixed dimensions (e.g., 6 mm biopsy), which becomes grossly under-powered as tumor volume scales. Here, we demonstrate representative sequencing (Rep-Seq) as a new method to achieve unbiased tumor tissue sampling. Rep-Seq uses fixed residual tumor material, which is homogenized and subjected to next-generation sequencing. Analysis of intratumor tumor mutation burden (TMB) variability shows a high level of misclassification using current single-biopsy methods, with 20% of lung and 52% of bladder tumors having at least one biopsy with high TMB but low clonal TMB overall. Misclassification rates by contrast are reduced to 2% (lung) and 4% (bladder) when a more representative sampling methodology is used. Rep-Seq offers an improved sampling protocol for tumor profiling, with significant potential for improved clinical utility and more accurate deconvolution of clonal structure
    • …
    corecore