223 research outputs found
Observations of Xyleborus affinis Eichhoff (Coleoptera:Curculionidae:Scolytinae) in Central Michigan
Xyleborus affinis Eichhoff colonized wind thrown timber in the moist floodplain habitats of Central Michigan. Single adult females constructed a complex gallery system consisting of phloem–sapwood interface tunnels and sapwood tunnels. An average of 24 progeny adults and a sex ratio of 14 females to 1 male were found in mature galleries after the first of September
Oxygen ion dynamics in the Earth's ring current: Van Allen probes observations
Oxygen (O+) enhancements in the inner magnetosphere are often observed during geomagnetically active times, such as geomagnetic storms. In this study, we quantitatively examine the difference in ring current dynamics with and without a substantial O+ ion population based on almost 6 years of Van Allen Probes observations. Our results have not only confirmed previous finding of the role of O+ ions to the ring current but also found that abundant O+ ions are always present during large storms when sym-H < -60 nT without exception, whilst having the pressure ratio () between O+ and proton (H+) larger than 0.8 and occasionally even larger than 1 when L < 3. Simultaneously, the pressure anisotropy decreases with decreasing sym-H and increasing L shell. The pressure anisotropy decrease during the storm main phase is likely related to the pitch angle isotropization processes. In addition, we find that increases during the storm main phase and then decreases during the storm recovery phase, suggesting faster buildup and decay of O+ pressure compared to H+ ions, which are probably associated with some species dependent source and/or energization as well as loss processes in the inner magnetosphere.Accepted manuscrip
Study of EMIC wave excitation using direct ion measurements
With data from Van Allen Probes, we investigate electromagnetic ion cyclotron (EMIC) wave excitation using simultaneously observed ion distributions. Strong He band waves occurred while the spacecraft was moving through an enhanced density region. We extract from helium, oxygen, proton, and electron mass spectrometer measurement the velocity distributions of warm heavy ions as well as anisotropic energetic protons that drive wave growth through the ion cyclotron instability. Fitting the measured ion fluxes to multiple sinm-type distribution functions, we find that the observed ions make up about 15% of the total ions, but about 85% of them are still missing. By making legitimate estimates of the unseen cold (below ∼2 eV) ion composition from cutoff frequencies suggested by the observed wave spectrum, a series of linear instability analyses and hybrid simulations are carried out. The simulated waves generally vary as predicted by linear theory. They are more sensitive to the cold O+ concentration than the cold He+ concentration. Increasing the cold O+ concentration weakens the He band waves but enhances the O band waves. Finally, the exact cold ion composition is suggested to be in a range when the simulated wave spectrum best matches the observed one
Recommended from our members
Origin of two-band chorus in the radiation belt of Earth.
Naturally occurring chorus emissions are a class of electromagnetic waves found in the space environments of the Earth and other magnetized planets. They play an essential role in accelerating high-energy electrons forming the hazardous radiation belt environment. Chorus typically occurs in two distinct frequency bands separated by a gap. The origin of this two-band structure remains a 50-year old question. Here we report, using NASA's Van Allen Probe measurements, that banded chorus waves are commonly accompanied by two separate anisotropic electron components. Using numerical simulations, we show that the initially excited single-band chorus waves alter the electron distribution immediately via Landau resonance, and suppress the electron anisotropy at medium energies. This naturally divides the electron anisotropy into a low and a high energy components which excite the upper-band and lower-band chorus waves, respectively. This mechanism may also apply to the generation of chorus waves in other magnetized planetary magnetospheres
Generation of EMIC Waves and Effects on Particle Precipitation During a Solar Wind Pressure Intensification With Bz>0.
During geomagnetic storms, some fraction of the solar wind energy is coupled via reconnection at the dayside magnetopause, a process that requires a southward interplanetary magnetic field Bz. Through a complex sequence of events, some of this energy ultimately drives the generation of electromagnetic ion cyclotron (EMIC) waves, which can then scatter energetic electrons and ions from the radiation belts. In the event described in this paper, the interplanetary magnetic field remained northward throughout the event, a condition unfavorable for solar wind energy coupling through low‐latitude reconnection. While this resulted in SYM/H remaining positive throughout the event (so this may not be considered a storm, in spite of the very high solar wind densities), pressure fluctuations were directly transferred into and then propagated throughout the magnetosphere, generating EMIC waves on global scales. The generation mechanism presumably involved the development of temperature anisotropies via perpendicular pressure perturbations, as evidenced by strong correlations between the pressure variations and the intensifications of the waves globally. Electron precipitation was recorded by the Balloon Array for RBSP Relativistic Electron Losses balloons, although it did not have the same widespread signatures as the waves and, in fact, appears to have been quite patchy in character. Observations from Van Allen Probe A satellite (at postmidnight local time) showed clear butterfly distributions, and it may be possible that the EMIC waves contributed to the development of these distribution functions. Ion precipitation was also recorded by the Polar‐orbiting Operational Environmental Satellite satellites, though tended to be confined to the dawn‐dusk meridians
The AEPEX Mission: Imaging Energetic Particle Precipitation Into Earth’s Upper Atmosphere
Radiation belt electron fluxes can be enhanced during geomagnetic storms by two orders of magnitude; subsequently, these fluxes decay back to nominal levels in a few days. Precipitation into the upper atmosphere is a primary loss mechanism for these electrons, particularly during the decay phase. Upon impacting the upper atmosphere, these electrons create new ionization, leading to a chemical response that increases NOx and HOx and destroys ozone. Quantifying both radiation belt loss and the impact on the atmosphere requires an accurate estimate of the flux, energy spectrum, and spatial and temporal scales of precipitation.
The NASA-funded Atmospheric Effects of Precipitation through Energetic X-rays (AEPEX) Cube-Sat mission is designed to quantify these parameters of radiation belt precipitation by measuring the bremsstrahlung X-rays created during the precipitation process, using a new instrument called the Atmospheric X-ray Imaging Spectrometer (AXIS). Hard X-rays (50-300 keV) emitted by Earth’s atmosphere have previously been measured from high-altitude balloons and satellites, but have never been imaged from space. The AXIS instrument will image the X-ray fluxes produced by the atmosphere, providing measurements of spatial scales, along with the X-ray flux and spectrum, using off-the-shelf pixelated detector modules and coded aperture optics. A solid-state energetic particle detector, with heritage from the FIREBIRD Cube Sat mission, will measure the precipitating electron energy spectrum, which is used to constrain the inversion from X-ray fluxes to electron fluxes. The AEPEX spacecraft is a 6U CubeSat, currently being built by the University of Colorado Boulder. It includes a custom-designed structure and a custom spacecraft bus consisting of an electrical power system, command and data handling, flight software, and instrument interface electronics designed by the Laboratory for Atmospheric and Space Physics (LASP) at CU Boulder. The system also includes custom-designed doubly-deployable solar panels. The mission will be launched into ahigh-inclination orbit to ensure coverage of high latitudes; launch is scheduled for early 2024
Deep Underground Science and Engineering Laboratory - Preliminary Design Report
The DUSEL Project has produced the Preliminary Design of the Deep Underground
Science and Engineering Laboratory (DUSEL) at the rehabilitated former
Homestake mine in South Dakota. The Facility design calls for, on the surface,
two new buildings - one a visitor and education center, the other an experiment
assembly hall - and multiple repurposed existing buildings. To support
underground research activities, the design includes two laboratory modules and
additional spaces at a level 4,850 feet underground for physics, biology,
engineering, and Earth science experiments. On the same level, the design
includes a Department of Energy-shepherded Large Cavity supporting the Long
Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates
one laboratory module and additional spaces for physics and Earth science
efforts. With input from some 25 science and engineering collaborations, the
Project has designed critical experimental space and infrastructure needs,
including space for a suite of multidisciplinary experiments in a laboratory
whose projected life span is at least 30 years. From these experiments, a
critical suite of experiments is outlined, whose construction will be funded
along with the facility. The Facility design permits expansion and evolution,
as may be driven by future science requirements, and enables participation by
other agencies. The design leverages South Dakota's substantial investment in
facility infrastructure, risk retirement, and operation of its Sanford
Laboratory at Homestake. The Project is planning education and outreach
programs, and has initiated efforts to establish regional partnerships with
underserved populations - regional American Indian and rural populations
Modeling Field Line Curvature Scattering Loss of 1–10 MeV Protons During Geomagnetic Storms
The proton radiation belt contains high fluxes of adiabatically trapped protons varying in energy from ∼one to hundreds of megaelectron volts (MeV). At large radial distances, magnetospheric field lines become stretched on the nightside of Earth and exhibit a small radius of curvature RC near the equator. This leads protons to undergo field line curvature (FLC) scattering, whereby changes to the first adiabatic invariant accumulate as field strength becomes nonuniform across a gyroorbit. The outer boundary of the proton belt at a given energy corresponds to the range of magnetic L shell over which this transition to nonadiabatic motion takes place, and is sensitive to the occurrence of geomagnetic storms. In this work, we first find expressions for nightside equatorial RC and field strength Be as functions of Dst and L* to fit the TS04 field model. We then apply the Tu et al. (2014, https://doi.org/10.1002/2014ja019864) condition for nonadiabatic onset to solve the outer boundary L*, and refine our expression for RC to achieve agreement with Van Allen Probes observations of 1–50 MeV proton flux over the 2014–2018 era. Finally, we implement this nonadiabatic onset condition into the British Antarctic Survey proton belt model (BAS-PRO) to solve the temporal evolution of proton fluxes at L ≤ 4. Compared with observations, BAS-PRO reproduces storm losses due to FLC scattering, but there is a discrepancy in mid-2017 that suggests a ∼5 MeV proton source not accounted for. Our work sheds light on outer zone proton belt variability at 1–10 MeV and demonstrates a useful tool for real-time forecasting
A Comparison of Standard-Dose and High-Dose Epinephrine in Cardiac Arrest outside the Hospital
BACKGROUND.
Experimental and uncontrolled clinical evidence suggests that intravenous epinephrine in doses higher than currently recommended may improve outcome after cardiac arrest. We conducted a prospective, multicenter study comparing standard-dose epinephrine with high-dose epinephrine in the management of cardiac arrest outside the hospital. METHODS.
Adult patients were enrolled in the study if they remained in ventricular fibrillation, or if they had asystole or electromechanical dissociation, at the time the first drug was to be administered to treat the cardiac arrest. Patients were randomly assigned to receive either 0.02 mg of epinephrine per kilogram of body weight (standard-dose group, 632 patients) or 0.2 mg per kilogram (high-dose group, 648 patients), both given intravenously. RESULTS.
In the standard-dose group 190 patients (30 percent) had a return of spontaneous circulation, as compared with 217 patients (33 percent) in the high-dose group; 136 patients (22 percent) in the standard-dose group and 145 patients (22 percent) in the high-dose group survived to be admitted to the hospital. Twenty-six patients (4 percent) in the standard-dose group and 31 (5 percent) in the high-dose group survived to discharge from the hospital. Ninety-two percent of the patients discharged in the standard-dose group and 94 percent in the high-dose group were conscious at the time of hospital discharge. None of the differences in outcome between the groups were statistically significant. CONCLUSIONS.
In this study, we were unable to demonstrate any difference in the overall rate of return of spontaneous circulation, survival to hospital admission, survival to hospital discharge, or neurologic outcome between patients treated with a standard dose of epinephrine and those treated with a high dose. (N Engl J Med 1992;327: 1051–5.
- …