761 research outputs found
Multifrequency EPR Studies of [Cu^(1.5)Cu^(1.5)]+ for Cu_2(μ-NR_2)_2 and Cu_2(μ-PR_2)_2 Diamond Cores
Multifrequency electron paramagnetic resonance (EPR) spectroscopy is used to explore the electronic structures of a series of dicopper complexes of the type {(LXL)Cu}_2^+. These complexes contain two four-coordinate copper centers of highly distorted tetrahedral geometries linked by two [LXL]^− ligands featuring bridging amido or phosphido ligands and associated thioether or phosphine chelate donors. Specific chelating [LXL]^− ligands examined in this study include bis(2-tert-butylsulfanylphenyl)amide (SNS), bis(2-di-iso-butylphosphinophenyl)amide (PNP), and bis(2-di-iso-propylphosphinophenyl)phosphide (PPP). To better map the electronic coupling to copper, nitrogen, and phosphorus in these complexes, X-, S-, and Q-band EPR spectra have been obtained for each complex. The resulting EPR parameters implied by computer simulation are unusual for typical dicopper complexes and are largely consistent with previously published X-ray absorption spectroscopy and density functional theory data, where a highly covalent {Cu_2(μ-XR_2)_2}^+ diamond core has been assigned in which removal of an electron from the neutral {Cu_2(μ-XR_2)_2} can be viewed as ligand-centered to a substantial degree. To our knowledge, this is the first family of dicopper diamond core model complexes for which the compendium of X-, S-, and Q-band EPR spectra have been collected for comparison to Cu_A
Structural Snapshots of a Flexible Cu_2P_2 Core that Accommodates the Oxidation States Cu^ICu^I, Cu^(1.5)Cu^(1.5), and Cu^(II)Cu^(II)
The phosphido-bridged dicopper(I) complex {(PPP)Cu}_2 has been synthesized and structurally characterized ([PPP]^- = bis(2-di-iso-propylphosphinophenyl)phosphide). Cyclic voltammetry of {(PPP)Cu}_2 in THF shows fully reversible oxidations at −1.02 V (Cu^(1.5)Cu^(1.5)/Cu^ICu^I) and −0.423 V (Cu^(II)Cu^(II)/Cu^(1.5)Cu^(1.5)). Chemical oxidation of {(PPP)Cu}_2 by one electron yields the class III mixed-valence species [{(PPP)Cu}_2]^+ (EPR, UV−vis). Structural data establish an unexpectedly large change (0.538 Å) in the Cu•••Cu distance upon oxidation state. Oxidation of {(PPP)Cu}_2 by two electrons yields the dication [{(PPP)Cu}_2]^(2+), an antiferromagnetically coupled dicopper(II) complex. Maintenance of a pseudotetrahedral geometry that is midway between a square plane and an ideal tetrahedron at the copper centers, along with a high degree of flexibility at the phosphide hinges, allows for efficient access to Cu^ICu^I, Cu^(1.5)Cu^(1.5), and Cu^(II)Cu^(II) redox states without the need for ligand exchange, substitution, or redistribution processes
Stress corrosion in titanium alloys and other metallic materials
Multiple physical and chemical techniques including mass spectroscopy, atomic absorption spectroscopy, gas chromatography, electron microscopy, optical microscopy, electronic spectroscopy for chemical analysis (ESCA), infrared spectroscopy, nuclear magnetic resonance (NMR), X-ray analysis, conductivity, and isotopic labeling were used in investigating the atomic interactions between organic environments and titanium and titanium oxide surfaces. Key anhydrous environments studied included alcohols, which contain hydrogen; carbon tetrachloride, which does not contain hydrogen; and mixtures of alcohols and halocarbons. Effects of dissolved salts in alcohols were also studied. This program emphasized experiments designed to delineate the conditions necessary rather than sufficient for initiation processes and for propagation processes in Ti SCC
Lines Missing Every Random Point
We prove that there is, in every direction in Euclidean space, a line that
misses every computably random point. We also prove that there exist, in every
direction in Euclidean space, arbitrarily long line segments missing every
double exponential time random point.Comment: Added a section: "Betting in Doubly Exponential Time.
The integrated academic information system support for education 3.0 in higher education institution: lecturer perspective
Education 3.0 has been implemented in many higher education institutions (HEIs). Education 3.0 has been directed the institution toward better educational experience. But on the other hands, the implementation of Education 3.0 also caused some problems. Previous research has found administrative problem experienced by the lecturer. This research explores deeper from the lecturer and suggested the solution from lecturer perspective, combined with information technology capabilities owned by the HEIs. The research used a case study as the method and conducted a qualitative research with a semi-structured interview. The interview analysis has found that the increase of the administrative processes is caused by online and offline administrative activities. The online activities are from e-learning and the offline activities are from traditional learning (face-to-face). The administrative processes also involved the academic information system (AIS). Simplified all of the administrative processes are more preferred. To overcome the problems, integrating the AIS and e-learning become necessary. This research suggests transforming the existing AIS into an integrated AIS and hopes the solution can simplify the administration process
Participatory budgeting, community engagement and impact on public services in Scotland
The institutional engagement and analysis needed to effectively integrate the requirements of equality legislation into participatory budgeting (PB) processes requires a transformational approach. Equality processes appear to exist in parallel with PB activity, rather than being operationalized as integral to the objectives and character of PB activity at local level. This paper proposes that PB and the Public Sector Equality Duty (PSED) in the Equality Act 2010 share a transformative intent and potential, but that this is undermined by siloed thinking on equalities and enduring discriminatory behaviour and practices. The paper concludes with propositions for aligning the conceptual links between equality and community empowerment and, thereby, participation in local financial decision-making in practice
Recommended from our members
Biodesulfurization of dibenzothiophene and crude oil using electro-spray reactors
Biological removal of organic sulfur from petroleum feedstocks offers an attractive alternative to conventional thermochemical treatment due to the mild operating conditions afforded by the biocatalyst. In order for biodesulfurization to realize commercial success, reactors must be designed which allow for sufficient liquid / liquid and gas / liquid mass transfer while simultaneously reducing operating costs. In this study, the use of electric field contactors for the biodesulfurization of the model compound dibenzothiophene (DBT) as well as actual crude oil is investigated. The emulsion phase contactor (EPC) creates an emulsion of aqueous biocatalyst in the organic phase by concentrating forces at the liquid / liquid interface rather than imparting energy to the bulk solution as is done in impeller-based reactors. Characterization of emulsion quality and determination of rates of DBT oxidation to 2- hydroxybiphenyl (2-HBP) were performed for both batch stirred reactors (BSR) and the EPC. The EPC was capable of producing aqueous droplets of about 5 {micro}m in diameter using 3 W/L whereas the impeller-based reactor formed droplets between 100 and 200 {micro}m with comparable power consumption. The presence of electric fields was not found to adversely affect biocatalytic activity. Despite the greater surface area for reaction afforded by the EPC, rates of DBT oxidation in both reactors were similar, demonstrating that the biocatalyst used (Rhodococcus sp. IGTS8) was not active enough to be mass transport limited. The EPC is expected to have tremendous impact upon reactor operating costs and biocatalyst utilization once advances biocatalyst development provide systems that are mass transport limited
Improving mammalian genome scaffolding using large insert mate-pair next-generation sequencing
BACKGROUND: Paired-tag sequencing approaches are commonly used for the analysis of genome structure. However, mammalian genomes have a complex organization with a variety of repetitive elements that complicate comprehensive genome-wide analyses. RESULTS: Here, we systematically assessed the utility of paired-end and mate-pair (MP) next-generation sequencing libraries with insert sizes ranging from 170 bp to 25 kb, for genome coverage and for improving scaffolding of a mammalian genome (Rattus norvegicus). Despite a lower library complexity, large insert MP libraries (20 or 25 kb) provided very high physical genome coverage and were found to efficiently span repeat elements in the genome. Medium-sized (5, 8 or 15 kb) MP libraries were much more efficient for genome structure analysis than the more commonly used shorter insert paired-end and 3 kb MP libraries. Furthermore, the combination of medium- and large insert libraries resulted in a 3-fold increase in N50 in scaffolding processes. Finally, we show that our data can be used to evaluate and improve contig order and orientation in the current rat reference genome assembly. CONCLUSIONS: We conclude that applying combinations of mate-pair libraries with insert sizes that match the distributions of repetitive elements improves contig scaffolding and can contribute to the finishing of draft genomes
- …