4 research outputs found

    Discovering circulating protein biomarkers through in-depth plasma proteomics

    Get PDF
    Plasma, i.e., the liquid component of blood, is one of the most clinically used samples for biomarker measurement. Despite that plasma proteins and metabolites are the most frequently analysed biomarkers in practice, identifying and implementing new circulating protein biomarkers for diagnosis, treatment prediction, prognosis, and disease monitoring has been limited. This PhD thesis compiles the discovery of systemic alterations in the blood plasma proteome and potential biomarkers related to disease status, prognosis, or treatment through plasma proteomics. We analysed plasma and serum samples with global proteomics by high-resolution isoelectric focusing (HiRIEF) and liquid chromatography coupled with mass-spectrometry (LC-MS/MS), and targeted proteomics by antibody-based proximity extension assays (PEA) in three diseases that would benefit from blood biomarkers: stage IV metastatic cutaneous melanoma (mCM), glioblastoma (GBM), and coronavirus disease 2019 (COVID-19). Specifically: a.) New treatment options for mCM substantially prolong overall survival (OS), but multiple patients do not respond to treatment or develop treatment resistance, thus having shorter progression free survival (PFS). Corroborated by the presence of multiple metastases, which makes biomarker sampling difficult, circulating proteins derived from the tumour and in response to treatment could serve as predictive and prognostic biomarkers in mCM. b.) GBM is the most malignant primary brain tumour with limited treatment options and notoriously short OS. Sampling biomarkers for GBM requires an invasive surgical intervention on the skull, which makes GBM a good candidate for circulating protein biomarkers for prognosis and monitoring. c.) COVID-19 is an inflammation-driven infectious disease that affects multiple organs and systems, thus making the plasma proteome a good source to explore systemic biological processes occurring in COVID-19. In papers I and II, using HiRIEF LC-MS/MS and PEA, we explored the treatment-driven plasma proteome alterations in mCM patients treated with anti-PD-1 immune checkpoint inhibitors (ICI) and MAPK-inhibitors (MAPKi), respectively, and identified potential treatment predictive and monitoring biomarkers. mCM patients treated with anti-PD-1 ICI had a strong increase in soluble PD-1 levels during treatment, and upregulation of proteins involved in T-cell response. BRAF[V600]-mutated mCM patients treated with MAPKi had deregulation in proteins involved in immune response and proteolysis. CPB1 had the highest increase in patients treated with BRAF- and MEK-inhibitors and was associated with longer PFS. Higher levels of several proteins involved in inflammation before treatment were associated with shorter PFS regardless of ICI or MAPKi treatment. In paper III, using HiRIEF LC-MS/MS and PEA, we longitudinally analysed the plasma proteome dynamics of GBM patients, collecting plasma samples before surgery and at three timepoints after surgery. Through consensus clustering, based on treatment-naïve plasma protein levels, we identified two patient clusters that differed in median OS. The association between the cluster membership and OS remained consistent after adjustment for age, sex, and treatment. Through machine learning, we identified protein panels that separated the patient clusters and may serve as prognostic biomarkers. The largest alterations in the plasma proteome of GBM patients occurred within two months after surgery, whereas the plasma protein levels at later timepoints had no difference compared to pre- surgery levels. We observed a decrease in glioma-elevated proteins in the blood after surgery, identifying potential monitoring biomarkers. In paper IV, using HiRIEF LC-MS/MS, we analysed serum proteome alterations in hospitalised COVID-19 patients in comparison to healthy controls, and identified a strong upregulation in inflammatory, interferon-induced, and proteasomal proteins. Several protein groups showed association with clinical parameters of COVID-19 severity, including proteasomal proteins. Serum proteome alterations were traceable to proteome alterations induced in a lung adenocarcinoma cell line (Calu-3) by infection with SARS-CoV-2. Finally, we performed the first meta-analysis of global proteomics studies of the soluble blood proteome in COVID-19, providing estimates of standardised mean differences and summary receiver operating characteristics curves. We demonstrate the high accuracy and precision of HiRIEF LC-MS/MS when compared to the meta-analysis estimates and pinpoint proteins that may serve as biomarkers of COVID-19. In summary, this thesis postulates that new circulating protein biomarkers would be clinically useful. By combining mass-spectrometry- and antibody-based-proteomics, we demonstrate the potential of in-depth analyses of the plasma proteome in capturing systemic alterations related to treatment, survival, and disease status, pinpointing potentially novel biomarkers that require validation in larger cohorts

    Glioblastoma stem cells express non-canonical proteins and exclusive mesenchymal-like or non-mesenchymal-like protein signatures

    Get PDF
    Glioblastoma (GBM) cancer stem cells (GSCs) contribute to GBM's origin, recurrence, and resistance to treatment. However, the understanding of how mRNA expression patterns of GBM subtypes are reflected at global proteome level in GSCs is limited. To characterize protein expression in GSCs, we performed in-depth proteogenomic analysis of patient-derived GSCs by RNA-sequencing and mass-spectrometry. We quantified > 10 000 proteins in two independent GSC panels and propose a GSC-associated proteomic signature characterizing two distinct phenotypic conditions; one defined by proteins upregulated in proneural and classical GSCs (GPC-like), and another by proteins upregulated in mesenchymal GSCs (GM-like). The GM-like protein set in GBM tissue was associated with necrosis, recurrence, and worse overall survival. Through proteogenomics, we discovered 252 non-canonical peptides in the GSCs, i.e., protein sequences that are variant or derive from genome regions previously considered non-protein-coding, including variants of the heterogeneous ribonucleoproteins implicated in RNA splicing. In summary, GSCs express two protein sets that have an inverse association with clinical outcomes in GBM. The discovery of non-canonical protein sequences questions existing gene models and pinpoints new protein targets for research in GBM

    In-depth plasma proteomics reveals increase in circulating PD-1 during anti-PD-1 immunotherapy in patients with metastatic cutaneous melanoma

    No full text
    Background Immune checkpoint inhibitors (ICIs) have significantly improved the outcome in metastatic cutaneous melanoma (CM). However, therapy response is limited to subgroups of patients and clinically useful predictive biomarkers are lacking.Methods To discover treatment-related systemic changes in plasma and potential biomarkers associated with treatment outcome, we analyzed serial plasma samples from 24 patients with metastatic CM, collected before and during ICI treatment, with mass-spectrometry-based global proteomics (high-resolution isoelectric focusing liquid chromatography–mass spectrometry (HiRIEF LC-MS/MS)) and targeted proteomics with proximity extension assays (PEAs). In addition, we analyzed plasma proteomes of 24 patients with metastatic CM treated with mitogen-activated protein kinase inhibitors (MAPKis), to pinpoint changes in protein plasma levels specific to the ICI treatment. To detect plasma proteins associated with treatment response, we performed stratified analyses in anti-programmed cell death protein 1 (anti-PD-1) responders and non-responders. In addition, we analyzed the association between protein plasma levels and progression-free survival (PFS) by Cox proportional hazards models.Results Unbiased HiRIEF LC-MS/MS-based proteomics showed plasma levels’ alterations related to anti-PD-1 treatment in 80 out of 1160 quantified proteins. Circulating PD-1 had the highest increase during anti-PD-1 treatment (log2-FC=2.03, p=0.0008) and in anti-PD-1 responders (log2-FC=2.09, p=0.005), but did not change in the MAPKis cohort. Targeted, antibody-based proteomics by PEA confirmed this observation. Anti-PD-1 responders had an increase in plasma proteins involved in T-cell response, neutrophil degranulation, inflammation, cell adhesion, and immune suppression. Furthermore, we discovered new associations between plasma proteins (eg, interleukin 6, interleukin 10, proline-rich acidic protein 1, desmocollin 3, C-C motif chemokine ligands 2, 3 and 4, vascular endothelial growth factor A) and PFS, which may serve as predictive biomarkers.Conclusions We detected an increase in circulating PD-1 during anti-PD-1 treatment, as well as diverse immune plasma proteomic signatures in anti-PD-1 responders. This study demonstrates the potential of plasma proteomics as a liquid biopsy method and in discovery of putative predictive biomarkers for anti-PD-1 treatment in metastatic CM

    Comprehensive proteomics and meta-analysis of COVID-19 host response

    No full text
    Abstract COVID-19 is characterised by systemic immunological perturbations in the human body, which can lead to multi-organ damage. Many of these processes are considered to be mediated by the blood. Therefore, to better understand the systemic host response to SARS-CoV-2 infection, we performed systematic analyses of the circulating, soluble proteins in the blood through global proteomics by mass-spectrometry (MS) proteomics. Here, we show that a large part of the soluble blood proteome is altered in COVID-19, among them elevated levels of interferon-induced and proteasomal proteins. Some proteins that have alternating levels in human cells after a SARS-CoV-2 infection in vitro and in different organs of COVID-19 patients are deregulated in the blood, suggesting shared infection-related changes.The availability of different public proteomic resources on soluble blood proteome alterations leaves uncertainty about the change of a given protein during COVID-19. Hence, we performed a systematic review and meta-analysis of MS global proteomics studies of soluble blood proteomes, including up to 1706 individuals (1039 COVID-19 patients), to provide concluding estimates for the alteration of 1517 soluble blood proteins in COVID-19. Finally, based on the meta-analysis we developed CoViMAPP, an open-access resource for effect sizes of alterations and diagnostic potential of soluble blood proteins in COVID-19, which is publicly available for the research, clinical, and academic community
    corecore