329 research outputs found

    On the equivalence between topologically and non-topologically massive abelian gauge theories

    Get PDF
    We analyse the equivalence between topologically massive gauge theory (TMGT) and different formulations of non-topologically massive gauge theories (NTMGTs) in the canonical approach. The different NTMGTs studied are St\"uckelberg formulation of (A) a first order formulation involving one and two form fields, (B) Proca theory, and (C) massive Kalb-Ramond theory. We first quantise these reducible gauge systems by using the phase space extension procedure and using it, identify the phase space variables of NTMGTs which are equivalent to the canonical variables of TMGT and show that under this the Hamiltonian also get mapped. Interestingly it is found that the different NTMGTs are equivalent to different formulations of TMGTs which differ only by a total divergence term. We also provide covariant mappings between the fields in TMGT to NTMGTs at the level of correlation function.Comment: One reference added and a typos corrected. 15 pages, To appear in Mod. Phys. Lett.

    State-recycling and time-resolved imaging in topological photonic lattices

    Get PDF
    Photonic lattices - arrays of optical waveguides - are powerful platforms for simulating a range of phenomena, including topological phases. While probing dynamics is possible in these systems, by reinterpreting the propagation direction as "time," accessing long timescales constitutes a severe experimental challenge. Here, we overcome this limitation by placing the photonic lattice in a cavity, which allows the optical state to evolve through the lattice multiple times. The accompanying detection method, which exploits a multi-pixel single-photon detector array, offers quasi-real time-resolved measurements after each round trip. We apply the state-recycling scheme to intriguing photonic lattices emulating Dirac fermions and Floquet topological phases. In this new platform, we also realise a synthetic pulsed electric field, which can be used to drive transport within photonic lattices. This work opens a new route towards the detection of long timescale effects in engineered photonic lattices and the realization of hybrid analogue-digital simulators.Comment: Comments are welcom

    Role of oxygen transients in the facile scission of C–O bonds of alcohols on Zn surfaces

    Get PDF
    The alkoxy species produced by the interaction of alcohols with Zn surfaces undergoes C–O bond scission at 150 K giving hydrocarbon species, but this transformation occurs even at 80 K when alcohol–oxygen mixtures are coadsorbed, due to the oxygen transients

    ENERGY EFFICIENT ADAPTIVE BROADCASTING SCHEME FOR WIRELESS SENSOR NETWORKS

    Get PDF
    ABSTRACT Energy-efficiency is a critical issue in wireless sensor networks (WSNs), since sensors are battery operated with limited life time. Energy efficient broadcasting will have a direct impact on network lifetime. Since the minimum energy broadcasting schemes are affected by broadcast storm problem, it has to be addressed to improve the energy efficiency. To overcome the broadcast storm problem, probabilistic schemes have been proposed in the literature to make a rebroadcast decision. However, the random assessment delay (RAD) in probabilistic broadcasting schemes results in poor reachability and increased end to end delay in the congested networks. In the proposed work, the probabilistic scheme adapts its RAD based on network congestion level. The simulation results reveals that the new scheme outperforms the existing schemes in term of saved-rebroadcast, packet delivery and routing overhead

    Nitrogen-containing carbon nanotubes

    Get PDF
    Carbon nanotubes containing small amounts of nitrogen are produced by the pyrolysis of aza-aromatics such as pyridine, methylpyrimidine and triazine over cobalt nanoparticles in an Ar atmosphere; good yields of such nanotubes are obtained by carrying out the pyrolysis of a mixture of pyridine and Fe(CO)5 in flowing Ar+H2

    Abelian 2-form gauge theory: special features

    Full text link
    It is shown that the four (3+1)(3 + 1)-dimensional (4D) free Abelian 2-form gauge theory provides an example of (i) a class of field theoretical models for the Hodge theory, and (ii) a possible candidate for the quasi-topological field theory (q-TFT). Despite many striking similarities with some of the key topological features of the two (1+1)(1 + 1)-dimensional (2D) free Abelian (and self-interacting non-Abelian) gauge theories, it turns out that the 4D free Abelian 2-form gauge theory is {\it not} an exact TFT. To corroborate this conclusion, some of the key issues are discussed. In particular, it is shown that the (anti-)BRST and (anti-)co-BRST invariant quantities of the 4D 2-form Abelian gauge theory obey the recursion relations that are reminiscent of the exact TFTs but the Lagrangian density of this theory is not found to be able to be expressed as the sum of (anti-)BRST and (anti-)co-BRST exact quantities as is the case with the {\it topological} 2D free Abelian (and self-interacting non-Abelian) gauge theories.Comment: LaTeX, 23 pages, journal ref. give

    BRST analysis of topologically massive gauge theory: novel observations

    Full text link
    A dynamical non-Abelian 2-form gauge theory (with B \wedge F term) is endowed with the "scalar" and "vector" gauge symmetry transformations. In our present endeavor, we exploit the latter gauge symmetry transformations and perform the Becchi-Rouet-Stora-Tyutin (BRST) analysis of the four (3 + 1)-dimensional (4D) topologically massive non-Abelian 2-form gauge theory. We demonstrate the existence of some novel features that have, hitherto, not been observed in the context of BRST approach to 4D (non-)Abelian 1-form as well as Abelian 2-form and 3-form gauge theories. We comment on the differences between the novel features that emerge in the BRST analysis of the "scalar" and "vector" gauge symmetries of the theory.Comment: LaTeX file, 14 pages, an appendix added, references expanded, version to appear in EPJ

    Molecular basis of association of receptor activity-modifying protein 3 with the family B G protein-coupled secretin receptor

    Get PDF
    The three receptor activity-modifying proteins (RAMPs) have been recognized as being important for the trafficking and function of a subset of family B G protein-coupled receptors, although the structural basis for this has not been well established. In the current work, we use morphological fluorescence techniques, bioluminescence resonance energy transfer, and bimolecular fluorescence complementation to demonstrate that the secretin receptor associates specifically with RAMP3, but not with RAMP1 or RAMP2. We use truncation constructs, peptide competition experiments, and chimeric secretin-GLP1 receptor constructs to establish that this association is structurally specific, dependent on the intramembranous region of the RAMP and TM6 and TM7 of this receptor. There were no observed changes in secretin-stimulated cAMP, intracellular calcium, ERK1/2 phosphorylation, or receptor internalization in receptor-bearing COS or CHO-K1 cells in the presence or absence of exogenous RAMP transfection, although the secretin receptor trafficks normally to the cell surface in these cells in a RAMP-independent manner, resulting in both free and RAMP-associated receptor on the cell surface. RAMP3 association with this receptor was shown to be capable of rescuing a receptor mutant (G241C) that is normally trapped intracellularly in the biosynthetic machinery. Similarly, secretin receptor expression had functional effects on adrenomedullin activity, with increasing secretin receptor expression competing for RAMP3 association with the calcitonin receptor-like receptor to yield a functional adrenomedullin receptor. These data provide important new insights into the structural basis for RAMP3 interaction with a family B G protein-coupled receptor, potentially providing a highly selective target for drug action. This may be representative of similar interactions between other members of this receptor family and RAMP proteins

    Notoph Gauge Theory: Superfield Formalism

    Full text link
    We derive absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the 4D free Abelian 2-form gauge theory by exploiting the superfield approach to BRST formalism. The antisymmetric tensor gauge field of the above theory was christened as the "notoph" (i.e. the opposite of "photon") gauge field by Ogievetsky and Palubarinov way back in 1966-67. We briefly outline the problems involved in obtaining the absolute anticommutativity of the (anti-) BRST transformations and their resolution within the framework of geometrical superfield approach to BRST formalism. One of the highlights of our results is the emergence of a Curci-Ferrari type of restriction in the context of 4D Abelian 2-form (notoph) gauge theory which renders the nilpotent (anti-) BRST symmetries of the theory to be absolutely anticommutative in nature.Comment: LaTeX file, 12 pages, Talk delivered at SQS'09 (BLTP, JINR, Dubna
    • …
    corecore