64 research outputs found

    The Mean Absorption Line Spectra of a Selection of Luminous z~6 Lyman Break Galaxies

    Get PDF
    We examine the absorption-line spectra of a sample of 31 luminous (MUV≃−23{M}_{\mathrm{UV}}\simeq -23) Lyman break galaxies at redshift z sime 6 using data taken with the FOCAS and OSIRIS spectrographs on the Subaru and GTC telescopes. For two of these sources we present longer exposure data taken at higher spectral resolutions from ESO's X-shooter spectrograph. Using these data, we demonstrate the practicality of stacking our lower-resolution data to measure the depth of various interstellar and stellar absorption lines to probe the covering fraction of low-ionization gas and the gas phase and stellar metallicities near the end of the era of cosmic reionization. From maximum absorption-line depths of Si ii λ1260 and C ii λ1334, we infer a mean covering fraction of ≥0.85 ± 0.16 for our sample. This is larger than that determined using similar methods for lower-luminosity galaxies at slightly lower redshifts, suggesting that the most luminous galaxies appear to have a lower escape fraction than fainter galaxies, and therefore may not play a prominent role in concluding reionization. Using various interstellar absorption lines we deduce gas-phase metallicities close to solar, indicative of substantial early enrichment. Using selected stellar absorption lines, we model our spectra with a range of metallicities using techniques successfully employed at lower redshift and deduce a stellar metallicity of 0.4−0.1+0.3{0.4}_{-0.1}^{+0.3} solar, consistent with the stellar mass—stellar metallicity relation recently found at z ~ 3–5. We discuss the implications of these metallicity estimates for the typical ages of our luminous galaxies and conclude our results imply initial star formation at redshifts z ~ 10, consistent with independent analyses of earlier objects

    Fluorescent C II* 1335A emission spectroscopically resolved in a galaxy at z = 5.754

    Get PDF
    We report the discovery of the first spectroscopically resolved C II /C II* 1334, 1335A doublet in the Lyman-break galaxy J0215-0555 at z = 5.754. The separation of the resonant and fluorescent emission channels was possible thanks to the large redshift of the source and long integration time, as well as the small velocity width of the feature, 0.6 +- 0.2A. We model this emission and find that at least two components are required to reproduce the combination of morphologies of C II* emission, C II absorption and emission, and Lyman-alpha emission from the object. We suggest that the close alignment between the fluorescence and Lyman-alpha emission could indicate an ionisation escape channel within the object. While the faintness of such a C II /C II* doublet makes it prohibitively difficult to pursue for similar systems with current facilities, we suggest it can become a valuable porosity diagnostic in the era of JWST and the upcoming generations of ELTs

    No strong radio absorption detected in the low-frequency spectra of radio-loud quasars at z > 5.6

    Get PDF
    © 2023 The Author(s). Published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/We present the low-frequency radio spectra of 9 high-redshift quasars at 5.6≤z≤6.65.6 \leq z \leq 6.6 using the Giant Metre Radio Telescope band-3, -4, and -5 observations (∼\sim300-1200 MHz), archival Low Frequency Array (LOFAR; 144 MHz), and Very Large Array (VLA; 1.4 and 3 GHz) data. Five of the quasars in our sample have been discovered recently, representing some of the highest redshift radio bright quasars known at low-frequencies. We model their radio spectra to study their radio emission mechanism and age of the radio jets by constraining the spectral turnover caused by synchrotron self-absorption (SSA) or free-free absorption (FFA). Besides J0309+2717, a blazar at z=6.1z=6.1, our quasars show no sign of a spectral flattening between 144 MHz and a few GHz, indicating there is no strong SSA or FFA absorption in the observed frequency range. However, we find a wide range of spectral indices between −1.6-1.6 and 0.050.05, including the discovery of 3 potential ultra-steep spectrum quasars. Using further archival VLBA data, we confirm that the radio SED of the blazar J0309+2717 likely turns over at a rest-frame frequency of 0.6-2.3 GHz (90-330 MHz observed frame), with a high-frequency break indicative of radiative ageing of the electron population in the radio lobes. Ultra-low frequency data below 50 MHz are necessary to constrain the absorption mechanism for J0309+2717 and the turnover frequencies for the other high-zz quasars in our sample. A relation between linear radio jet size and turnover frequency has been established at low redshifts. If this relation were to hold at high redshifts, the limits on the turnover frequency of our sample suggest the radio jet sizes must be more extended than the typical sizes observed in other radio-bright quasars at similar redshift. To confirm this deep radio follow-up observations with high spatial resolution are required.Peer reviewe

    The Hyper Suprime-Cam SSP Survey: Overview and Survey Design

    Full text link
    Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2m Subaru telescope on the summit of Maunakea in Hawaii. A team of scientists from Japan, Taiwan and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg2^2 in five broad bands (grizygrizy), with a 5 σ5\,\sigma point-source depth of r≈26r \approx 26. The Deep layer covers a total of 26~deg2^2 in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg2^2). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey.Comment: 14 pages, 7 figures, 5 tables. Corrected for a typo in the coordinates of HSC-Wide spring equatorial field in Table

    Plausible association of distant late M dwarfs with low-frequency radio emission

    Full text link
    We present the serendipitous discovery of 8 distant (>> 50 pc) late M dwarfs with plausible associated radio emission at 144 MHz. The M dwarf nature of our sources has been confirmed with optical spectroscopy performed using HET/LRS2 and Subaru/FOCAS, and their radio flux densities are within the range of 0.5-1.0 mJy at 144 MHz. Considering the radio-optical source separation and source densities of the parent catalogues, we suggest that it is statistically probable the M dwarfs are associated with the radio emission. However, it remains plausible that for some of the sources the radio emission originates from an optically faint and red galaxy hiding behind the M dwarf. The isotropic radio luminosities (∼1017−18\sim10^{17-18} erg s−1^{-1} Hz−1^{-1}) of the M dwarfs suggest that if the association is real, the radio emission is likely driven by a coherent emission process produced via plasma or electron-cyclotron maser instability processes, which is potentially caused by binary interaction. Long term monitoring in the radio and high-resolution radio follow-up observations are necessary to search for any variability and pinpoint the radio emission to determine whether our tentative conclusion that these ultracool dwarfs are radio emitting is correct. If the low-frequency radio emission is conclusively associated with the M dwarfs, this would reveal a new population of optically faint and distant (>> 50 pc) radio emitting M dwarfs.Comment: 10 pages, 5 figures, accepted for publication in A&

    A kilometer-scale asteroid inside Venus's orbit

    Get PDF
    Near-Earth asteroid population models predict the existence of asteroids located inside the orbit of Venus. However, despite searches up to the end of 2019, none have been found. Here we report the discovery by the Zwicky Transient Facility of the first known asteroid located inside of Venus' orbit, 2020 AV₂, possessing an aphelion distance of 0.65 au and ∼2 km in size. While it is possible that 2020 AV₂ is the largest of its kind, we find that its discovery is surprising in the context of population models where the expected count is close to zero. If this discovery is not a statistical fluke, then 2020 AV₂ may come from a yet undiscovered source population of asteroids interior to Venus, and currently favored asteroid population models may need to be adjusted

    A kilometer-scale asteroid inside Venus's orbit

    Get PDF
    Near-Earth asteroid population models predict the existence of asteroids located inside the orbit of Venus. However, despite searches up to the end of 2019, none have been found. Here we report the discovery by the Zwicky Transient Facility of the first known asteroid located inside of Venus' orbit, 2020 AV₂, possessing an aphelion distance of 0.65 au and ∼2 km in size. While it is possible that 2020 AV₂ is the largest of its kind, we find that its discovery is surprising in the context of population models where the expected count is close to zero. If this discovery is not a statistical fluke, then 2020 AV₂ may come from a yet undiscovered source population of asteroids interior to Venus, and currently favored asteroid population models may need to be adjusted
    • …
    corecore