6 research outputs found

    Identification of binding sites and favorable ligand binding moieties by virtual screening and self-organizing map analysis.

    No full text
    International audienceIdentifying druggable cavities on a protein surface is a crucial step in structure based drug design. The cavities have to present suitable size and shape, as well as appropriate chemical complementarity with ligands. We present a novel cavity prediction method that analyzes results of virtual screening of specific ligands or fragment libraries by means of Self-Organizing Maps. We demonstrate the method with two thoroughly studied proteins where it successfully identified their active sites (AS) and relevant secondary binding sites (BS). Moreover, known active ligands mapped the AS better than inactive ones. Interestingly, docking a naive fragment library brought even more insight. We then systematically applied the method to the 102 targets from the DUD-E database, where it showed a 90% identification rate of the AS among the first three consensual clusters of the SOM, and in 82% of the cases as the first one. Further analysis by chemical decomposition of the fragments improved BS prediction. Chemical substructures that are representative of the active ligands preferentially mapped in the AS. The new approach provides valuable information both on relevant BSs and on chemical features promoting bioactivity

    A highly sensitive cell-based luciferase assay for high-throughput automated screening of SARS-CoV-2 nsp5/3CLpro inhibitors

    No full text
    International audienceEffective drugs against SARS-CoV-2 are urgently needed to treat severe cases of infection and for prophylactic use. The main viral protease (nsp5 or 3CLpro) represents an attractive and possibly broad-spectrum target for drug development as it is essential to the virus life cycle and highly conserved among betacoronaviruses. Sensitive and efficient high-throughput screening methods are key for drug discovery. Here we report the development of a gain-of-signal, highly sensitive cell-based luciferase assay to monitor SARS-CoV-2 nsp5 activity and show that it is suitable for the screening of compounds in a 384-well format. A benefit of miniaturisation and automation is that screening can be performed in parallel on a wild-type and a catalytically inactive nsp5, which improves the selectivity of the assay. We performed molecular docking-based screening on a set of 14,468 compounds from an in-house chemical database, selected 359 candidate nsp5 inhibitors and tested them experimentally. We identified two molecules which show anti-nsp5 activity, both in our cell-based assay and in vitro on purified nsp5 protein, and inhibit SARS-CoV-2 replication in A549-ACE2 cells with EC50 values in the 4–8 μM range. The here described high-throughput-compatible assay will allow the screening of large-scale compound libraries for SARS-CoV-2 nsp5 inhibitors. Moreover, we provide evidence that this assay can be adapted to other coronaviruses and viruses which rely on a viral protease
    corecore