50 research outputs found

    A 3D topological insulator quantum dot for optically controlled quantum memory and quantum computing

    Get PDF
    We present the model of a quantum dot (QD) consisting of a spherical core-bulk heterostructure made of 3D topological insulator (TI) materials, such as PbTe/Pb0.31_{0.31}Sn0.69_{0.69}Te, with bound massless and helical Weyl states existing at the interface and being confined in all three dimensions. The number of bound states can be controlled by tuning the size of the QD and the magnitude of the core and bulk energy gaps, which determine the confining potential. We demonstrate that such bound Weyl states can be realized for QD sizes of few nanometers. We identify the spin locking and the Kramers pairs, both hallmarks of 3D TIs. In contrast to topologically trivial semiconductor QDs, the confined massless Weyl states in 3D TI QDs are localized at the interface of the QD and exhibit a mirror symmetry in the energy spectrum. We find strict optical selection rules satisfied by both interband and intraband transitions that depend on the polarization of electron-hole pairs and therefore give rise to the Faraday effect due to Pauli exclusion principle. We show that the semi-classical Faraday effect can be used to read out spin quantum memory. When a 3D TI QD is embedded inside a cavity, the single-photon Faraday rotation provides the possibility to implement optically mediated quantum teleportation and quantum information processing with 3D TI QDs, where the qubit is defined by either an electron-hole pair, a single electron spin, or a single hole spin in a 3D TI QD. Remarkably, the combination of inter- and intraband transition gives rise to a large dipole moment of up to 450 Debye. Therefore, the strong-coupling regime can be reached for a cavity quality factor of Q≈104Q\approx10^{4} in the infrared wavelength regime of around 10 μ10\:\mum.Comment: 19 pages, 11 figures, RevTe

    Axial range of conjugate adaptive optics in two-photon microscopy

    Full text link
    We describe an adaptive optics technique for two-photon microscopy in which the deformable mirror used for aberration compensation is positioned in a plane conjugate to the plane of the aberration. We demonstrate in a proof-of-principle experiment that this technique yields a large field of view advantage in comparison to standard pupil-conjugate adaptive optics. Further, we show that the extended field of view in conjugate AO is maintained over a relatively large axial translation of the deformable mirror with respect to the conjugate plane. We conclude with a discussion of limitations and prospects for the conjugate AO technique in two-photon biological microscopy

    Tigecycline: pharmacological concerns and resistance

    Get PDF
    Tigecycline, a semisynthetic derivative of minocycline, has a broad spectrum of activity against both gram positive and gram negative multidrug resistant bacteria.  The drug acts on 30S ribosomal subunit and inhibits protein synthesis. Since the drug has excellent tissue distribution, it is very useful for treatment of skin infections, intra-abdominal infections and pneumonia. Side effects of the drug are usually mild. The common side effects include nausea and vomiting. The exact mechanism of resistance remains unclear. However, resistance mediated by enhanced expression of resistance nodulation cell division (RND) type efflux pumps is one of the most frequently reported mechanisms. Resistance has been observed worldwide. However, the rate of resistance is low

    An overview of carbapenem, its resistance and therapeutic options for infections caused by carbapenem resistant bacteria

    Get PDF
    Carbapenems are beta-lactam drugs that have broadest spectrum of activity. They are commonly used as the drugs of last resort to treat complicated bacterial infections. They bind to penicillin binding proteins (PBPs) and inhibit cell wall synthesis in bacteria. Important members that are in clinical use include doripenem, ertapenem, imipenem, and meropenem. Unlike other members, imipenem is hydrolyzed significantly by renal dehydropeptidase; therefore, it is administered together with an inhibitor of renal dehydropeptidase, cilastatin. Carbapenems are usually administered intravenously due to their low oral bioavailability. Most common side effects of these drugs include nausea, vomiting, diarrhea, skin rashes, and reactions at the infusion sites. Increasing resistance to these antibiotics is being reported throughout the world and is posing a threat to public health.  Primary mechanisms of carbapenem resistance include expulsion of drug and inactivation of the drug by production of carbapenemases which may not only hydrolyze carbapenem, but also cephalosporin, penicillin, and aztreonam. Resistance especially among Gram negative bacteria is of much concern since there are only limited therapeutic options available for infections caused by carbapenem resistant Gram-negative bacterial pathogens. Commonly used drugs to treat such infections include polymyxins, fosfomycin and tigecycline

    Linezolid resistance in vancomycin resistant enterococci: a worrisome situation

    Get PDF
    Vancomycin resistant enterococci (VRE) have emerged as important nosocomial pathogens since 1986. VRE have been associated with higher morbidity and mortality rates than vancomycin susceptible enterococci.Of over 50 species of Enterococcus, a genus of Gram-positive cocci arranged in pairs and short chains, E. faecalis is the most common cause of infections whereas E. faecium is the species exhibiting highest rate of antibiotic resistance. VRE have been implicated in varieties of infections such as bacteremia, infective endocarditis, intra-abdominal and pelvic infections, urinary tract infections, central nervous system infections and skin and skin structure infections

    Photoluminescence Quenching in Single-layer MoS2 via Oxygen Plasma Treatment

    Full text link
    By creating defects via oxygen plasma treatment, we demonstrate optical properties variation of single-layer MoS2. We found that, with increasing plasma exposure time, the photoluminescence (PL) evolves from very high intensity to complete quenching, accompanied by gradual reduction and broadening of MoS2 Raman modes, indicative of distortion of the MoS2 lattice after oxygen bombardment. X-ray photoelectron spectroscopy study shows the appearance of Mo6+ peak, suggesting the creation of MoO3 disordered regions in the MoS2 flake. Finally, using band structure calculations, we demonstrate that the creation of MoO3 disordered domains upon exposure to oxygen plasma leads to a direct to indirect bandgap transition in single-layer MoS2, which explains the observed PL quenching.Comment: 12 pages, 7 figure

    Nanoplasmonics in Metallic Nanostructures and Dirac Systems

    Get PDF
    In this book chapter, we review some of the progress made in nanoplasmonics and related optoelectronics phenomena in the field of two-dimensional (2D) materials and the recent 3D Weyl semimetals. We give a brief overview of plasmonics for three-dimensional (3DEG) and two-dimensional electron gases and draw comparisons with graphene, 3D topological insulators, 3D Weyl semimetals, and nanoplasmonics in nanogeometries. We discuss the decay of plasmons into electron-hole pairs and the subsequent thermalization and cooling of the hot carriers. We present our recent results in the fields of plasmonics in different nanostructures made of noble metals, such as Silver, and plasmonics in Dirac systems such as graphene and 3D topological insulators. We show a possibility of dynamically shifting the plasmon resonances in hybrid metal-semiconductor nanostructures. Plasmonics in 3D topological insulator and 3D Weyl semimetals have been least explored in nanoplasmonics although it can provide a variety of interesting physical phenomena involving spin plasmonics and chirality. Due to the inherent large spin-orbit coupling, locked spin-momentum oscillations can exist under special conditions and in the presence of an external laser field. We explore symmetric and antisymmetric modes in a slab of 3D TIs and present their dependences on the thickness of the slab

    Three-dimensional topological insulator quantum dot for optically controlled quantum memory and quantum computing

    Get PDF
    We present the model of a quantum dot (QD) consisting of a spherical core-bulk heterostructure made of three-dimensional (3D) topological insulator (TI) materials, such as PbTe/Pb0.31Sn0.69Te, with bound massless and helical Weyl states existing at the interface and being confined in all three dimensions. The number of bound states can be controlled by tuning the size of the QD and the magnitude of the core and bulk energy gaps, which determine the confining potential. We demonstrate that such bound Weyl states can be realized for QD sizes of few nanometers. We identify the spin locking and the Kramers pairs, both hallmarks of 3D TIs. In contrast to topologically trivial semiconductor QDs, the confined massless Weyl states in 3D TI QDs are localized at the interface of the QD and exhibit a mirror symmetry in the energy spectrum. We find strict optical selection rules satisfied by both interband and intraband transitions that depend on the polarization of electron-hole pairs and therefore give rise to the Faraday effect due to the Pauli exclusion principle. We show that the semiclassical Faraday effect can be used to read out spin quantum memory. When a 3D TI QD is embedded inside a cavity, the single-photon Faraday rotation provides the possibility to implement optically mediated quantum teleportation and quantum information processing with 3D TI QDs, where the qubit is defined by either an electron-hole pair, a single electron spin, or a single hole spin in a 3D TI QD. Remarkably, the combination of interband and intraband transition gives rise to a large dipole moment of up to 450 Debye. Therefore, the strong-coupling regime can be reached for a cavity quality factor of Q approximate to 10(4) in the infrared wavelength regime of around 10 mu m
    corecore