229 research outputs found
TBC-2 Is Required for Embryonic Yolk Protein Storage and Larval Survival during L1 Diapause in Caenorhabditis elegans
C. elegans first stage (L1) larvae hatched in the absence of food, arrest development and enter an L1 diapause, whereby they can survive starvation for several weeks. The physiological and metabolic requirements for survival during L1 diapause are poorly understood. However, yolk, a cholesterol binding/transport protein, has been suggested to serve as an energy source. Here, we demonstrate that C. elegans TBC-2, a RAB-5 GTPase Activating Protein (GAP) involved in early-to-late endosome transition, is important for yolk protein storage during embryogenesis and for L1 survival during starvation. We found during embryogenesis, that a yolk::green fluorescent protein fusion (YP170::GFP), disappeared much more quickly in tbc-2 mutant embryos as compared with wild-type control embryos. The premature disappearance of YP170::GFP in tbc-2 mutants is likely due to premature degradation in the lysosomes as we found that YP170::GFP showed increased colocalization with Lysotracker Red, a marker for acidic compartments. Furthermore, YP170::GFP disappearance in tbc-2 mutants required RAB-7, a regulator of endosome to lysosome trafficking. Although tbc-2 is not essential in fed animals, we discovered that tbc-2 mutant L1 larvae have strongly reduced survival when hatched in the absence of food. We show that tbc-2 mutant larvae are not defective in maintaining L1 diapause and that mutants defective in yolk uptake, rme-1 and rme-6, also had strongly reduced L1 survival when hatched in the absence of food. Our findings demonstrate that TBC-2 is required for yolk protein storage during embryonic development and provide strong correlative data indicating that yolk constitutes an important energy source for larval survival during L1 diapause
Perturbations of MicroRNA Function in Mouse Dicer Mutants Produce Retinal Defects and Lead to Aberrant Axon Pathfinding at the Optic Chiasm
During development axons encounter a variety of choice points where they have to make appropriate pathfinding decisions. The optic chiasm is a major decision point for retinal ganglion cell (RGC) axons en route to their target in order to ensure the correct wiring of the visual system. MicroRNAs (miRNAs) belong to the class of small non-coding RNA molecules and have been identified as important regulators of a variety of processes during embryonic development. However, their involvement in axon guidance decisions is less clear.We report here that the early loss of Dicer, an essential protein for the maturation of miRNAs, in all cells of the forming retina and optic chiasm leads to severe phenotypes of RGC axon pathfinding at the midline. Using a conditional deletion approach in mice, we find in homozygous Dicer mutants a marked increase of ipsilateral projections, RGC axons extending outside the optic chiasm, the formation of a secondary optic tract and a substantial number of RGC axons projecting aberrantly into the contralateral eye. In addition, the mutant mice display a microphthalmia phenotype.Our work demonstrates an important role of Dicer controlling the extension of RGC axons to the brain proper. It indicates that miRNAs are essential regulatory elements for mechanisms that ensure correct axon guidance decisions at the midline and thus have a central function in the establishment of circuitry during the development of the nervous system
Ectopic Wnt/Beta–Catenin Signaling Induces Neurogenesis in the Spinal Cord and Hindbrain Floor Plate
The most ventral structure of the developing neural tube, the floor plate (FP), differs in neurogenic capacity along the neuraxis. The FP is largely non-neurogenic at the hindbrain and spinal cord levels, but generates large numbers of dopamine (mDA) neurons at the midbrain levels. Wnt1, and other Wnts are expressed in the ventral midbrain, and Wnt/beta catenin signaling can at least in part account for the difference in neurogenic capacity of the FP between midbrain and hindbrain levels. To further develop the hypothesis that canonical Wnt signaling promotes mDA specification and FP neurogenesis, we have generated a model wherein beta–catenin is conditionally stabilized throughout the FP. Here, we unambiguously show by fate mapping FP cells in this mutant, that the hindbrain and spinal cord FP are rendered highly neurogenic, producing large numbers of neurons. We reveal that a neurogenic hindbrain FP results in the altered settling pattern of neighboring precerebellar neuronal clusters. Moreover, in this mutant, mDA progenitor markers are induced throughout the rostrocaudal axis of the hindbrain FP, although TH+ mDA neurons are produced only in the rostral aspect of rhombomere (r)1. This is, at least in part, due to depressed Lmx1b levels by Wnt/beta catenin signaling; indeed, when Lmx1b levels are restored in this mutant, mDA are observed not only in rostral r1, but also at more caudal axial levels in the hindbrain, but not in the spinal cord. Taken together, these data elucidate both patterning and neurogenic functions of Wnt/beta catenin signaling in the FP, and thereby add to our understanding of the molecular logic of mDA specification and neurogenesis
Ablation of Dicer from murine Schwann cells increases their proliferation while blocking myelination
The myelin sheaths that surround the thick axons of the peripheral nervous system are produced by the highly specialized Schwann cells. Differentiation of Schwann cells and myelination occur in discrete steps. Each of these requires coordinated expression of specific proteins in a precise sequence, yet the regulatory mechanisms controlling protein expression during these events are incompletely understood. Here we report that Schwann cell-specific ablation of the enzyme Dicer1, which is required for the production of small non-coding regulatory microRNAs, fully arrests Schwann cell differentiation, resulting in early postnatal lethality. Dicer(-/-) Schwann cells had lost their ability to myelinate, yet were still capable of sorting axons. Both cell death and, paradoxically, proliferation of immature Schwann cells was markedly enhanced, suggesting that their terminal differentiation is triggered by growth-arresting regulatory microRNAs. Using microRNA microarrays, we identified 16 microRNAs that are upregulated upon myelination and whose expression is controlled by Dicer in Schwann cells. This set of microRNAs appears to drive Schwann cell differentiation and myelination of peripheral nerves, thereby fulfilling a crucial function for survival of the organism
Sequencing and Bioinformatics-Based Analyses of the microRNA Transcriptome in Hepatitis B–Related Hepatocellular Carcinoma
MicroRNAs (miRNAs) participate in crucial biological processes, and it is now evident that miRNA alterations are involved in the progression of human cancers. Recent studies on miRNA profiling performed with cloning suggest that sequencing is useful for the detection of novel miRNAs, modifications, and precise compositions and that miRNA expression levels calculated by clone count are reproducible. Here we focus on sequencing of miRNA to obtain a comprehensive profile and characterization of these transcriptomes as they relate to human liver. Sequencing using 454 sequencing and conventional cloning from 22 pair of HCC and adjacent normal liver (ANL) and 3 HCC cell lines identified reliable reads of more than 314000 miRNAs from HCC and more than 268000 from ANL for registered human miRNAs. Computational bioinformatics identified 7 novel miRNAs with high conservation, 15 novel opposite miRNAs, and 3 novel antisense miRNAs. Moreover sequencing can detect miRNA modifications including adenosine-to-inosine editing in miR-376 families. Expression profiling using clone count analysis was used to identify miRNAs that are expressed aberrantly in liver cancer including miR-122, miR-21, and miR-34a. Furthermore, sequencing-based miRNA clustering, but not individual miRNA, detects high risk patients who have high potentials for early tumor recurrence after liver surgery (P = 0.006), and which is the only significant variable among pathological and clinical and variables (P = 0,022). We believe that the combination of sequencing and bioinformatics will accelerate the discovery of novel miRNAs and biomarkers involved in human liver cancer
Association of common variants in mismatch repair genes and breast cancer susceptibility: a multigene study
<p>Abstract</p> <p>Background</p> <p>MMR is responsible for the repair of base-base mismatches and insertion/deletion loops. Besides this, MMR is also associated with an anti-recombination function, suppressing homologous recombination. Losses of heterozygosity and/or microsatellite instability have been detected in a large number of skin samples from breast cancer patients, suggesting a potential role of MMR in breast cancer susceptibility.</p> <p>Methods</p> <p>We carried out a hospital-based case-control study in a Caucasian Portuguese population (287 cases and 547 controls) to estimate the susceptibility to non-familial breast cancer associated with some polymorphisms in mismatch repair genes (<it>MSH3</it>, <it>MSH4</it>, <it>MSH6</it>, <it>MLH1</it>, <it>MLH3</it>, <it>PMS1 </it>and <it>MUTYH</it>).</p> <p>Results</p> <p>Using unconditional logistic regression we found that <it>MLH3 </it>(L844P, G>A) polymorphism GA (Leu/Pro) and AA (Pro/Pro) genotypes were associated with a decreased risk: OR = 0.65 (0.45-0.95) (p = 0.03) and OR = 0.62 (0.41-0.94) (p = 0.03), respectively.</p> <p>Analysis of two-way SNP interaction effects on breast cancer revealed two potential associations to breast cancer susceptibility: <it>MSH3 </it>Ala1045Thr/<it>MSH6 </it>Gly39Glu - AA/TC [OR = 0.43 (0.21-0.83), p = 0.01] associated with a decreased risk; and <it>MSH4 </it>Ala97Thr/<it>MLH3 </it>Leu844Pro - AG/AA [OR = 2.35 (1.23-4.49), p = 0.01], GG/AA [OR = 2.11 (1.12-3,98), p = 0.02], and GG/AG [adjusted OR = 1.88 (1.12-3.15), p = 0.02] all associated with an increased risk for breast cancer.</p> <p>Conclusion</p> <p>It is possible that some of these common variants in MMR genes contribute significantly to breast cancer susceptibility. However, further studies with a large sample size will be needed to support our results.</p
MIR-99a and MIR-99b Modulate TGF-β Induced Epithelial to Mesenchymal Plasticity in Normal Murine Mammary Gland Cells
Epithelial to mesenchymal transition (EMT) is a key process during embryonic development and disease development and progression. During EMT, epithelial cells lose epithelial features and express mesenchymal cell markers, which correlate with increased cell migration and invasion. Transforming growth factor-β (TGF-β) is a multifunctional cytokine that induces EMT in multiple cell types. The TGF-β pathway is regulated by microRNAs (miRNAs), which are small non-coding RNAs regulating the translation of specific messenger RNAs
Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism
Morphogens act in developing tissues to control the spatial arrangement of cellular differentiation(1,2). The activity of a morphogen has generally been viewed as a concentration-dependent response to a diffusible signal, but the duration of morphogen signalling can also affect cellular responses(3). One such example is the morphogen sonic hedgehog (SHH). In the vertebrate central nervous system and limbs, the pattern of cellular differentiation is controlled by both the amount and the time of SHH exposure(4-7). How these two parameters are interpreted at a cellular level has been unclear. Here we provide evidence that changing the concentration or duration of SHH has an equivalent effect on intracellular signalling. Chick neural cells convert different concentrations of SHH into time-limited periods of signal transduction, such that signal duration is proportional to SHH concentration. This depends on the gradual desensitization of cells to ongoing SHH exposure, mediated by the SHH-dependent upregulation of patched 1 (PTC1), a ligand-binding inhibitor of SHH signalling(8). Thus, in addition to its role in shaping the SHH gradient(8-10), PTC1 participates cell autonomously in gradient sensing. Together, the data reveal a novel strategy for morphogen interpretation, in which the temporal adaptation of cells to a morphogen integrates the concentration and duration of a signal to control differential gene expression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62511/1/nature06347.pd
Dicer Is Required for Maintaining Adult Pancreas
Dicer1, an essential component of RNA interference and the microRNA pathway, has many important roles in the morphogenesis of developing tissues. Dicer1 null mice have been reported to die at E7.5; therefore it is impossible to study its function in adult tissues. We previously reported that Dicer1-hypomorphic mice, whose Dicer1 expression was reduced to 20% in all tissues, were unexpectedly viable. Here we analyzed these mice to ascertain whether the down-regulation of Dicer1 expression has any influence on adult tissues. Interestingly, all tissues of adult (8–10 week old) Dicer1-hypomorphic mice were histologically normal except for the pancreas, whose development was normal at the fetal and neonatal stages; however, morphologic abnormalities in Dicer1-hypomorphic mice were detected after 4 weeks of age. This suggested that Dicer1 is important for maintaining the adult pancreas
Dicer Is Required for Maintaining Adult Pancreas
Dicer1, an essential component of RNA interference and the microRNA pathway, has many important roles in the morphogenesis of developing tissues. Dicer1 null mice have been reported to die at E7.5; therefore it is impossible to study its function in adult tissues. We previously reported that Dicer1-hypomorphic mice, whose Dicer1 expression was reduced to 20% in all tissues, were unexpectedly viable. Here we analyzed these mice to ascertain whether the down-regulation of Dicer1 expression has any influence on adult tissues. Interestingly, all tissues of adult (8–10 week old) Dicer1-hypomorphic mice were histologically normal except for the pancreas, whose development was normal at the fetal and neonatal stages; however, morphologic abnormalities in Dicer1-hypomorphic mice were detected after 4 weeks of age. This suggested that Dicer1 is important for maintaining the adult pancreas
- …