66 research outputs found

    Why behaviour matters: Studying inter-brain coordination during child-caregiver interaction

    Get PDF
    Modern technology allows for simultaneous neuroimaging from interacting caregiver-child dyads. Whereas most analyses that examine the coordination between brain regions within an individual brain do so by measuring changes relative to observed events, studies that examine coordination between two interacting brains generally do this by measuring average intra-brain coordination across entire blocks or experimental conditions. In other words, they do not examine changes in inter-brain coordination relative to individual behavioural events. Here, we discuss the limitations of this approach. First, we present data suggesting that fine-grained temporal interdependencies in behaviour can leave residual artifact in neuroimaging data. We show how artifact can manifest as both power and (through that) phase synchrony effects in EEG and affect wavelet transform coherence in fNIRS analyses. Second, we discuss different possible mechanistic explanations of how inter-brain coordination is established and maintained. We argue that non-event-locked approaches struggle to differentiate between them. Instead, we contend that approaches which examine how interpersonal dynamics change around behavioural events have better potential for addressing possible artifactual confounds and for teasing apart the overlapping mechanisms that drive changes in inter-brain coordination

    Interpersonal Neural Entrainment during Early Social Interaction

    Get PDF
    Currently, we understand much about how children’s brains attend to and learn from information presented while they are alone, viewing a screen – but less about how interpersonal social influences are substantiated in the brain. Here, we consider research that examines how social behaviors affect not one, but both partners in a dyad. We review studies that measured interpersonal neural entrainment during early social interaction, considering two ways of measuring entrainment: concurrent entrainment (e.g., ‘when A is high, B is high’ – also known as synchrony) and sequential entrainment (‘changes in A forward-predict changes in B’). We discuss possible causes of interpersonal neural entrainment, and consider whether it is merely an epiphenomenon, or whether it plays an independent, mechanistic role in early attention and learning

    The development of the relationship between auditory and visual neural sensitivity and autonomic arousal from 6 m to 12 m

    Get PDF
    The differential sensitivity hypothesis argues that environmental sensitivity has the bivalent effect of predisposing individuals to both the risk-inducing and development-enhancing influences of early social environments. However, the hypothesis requires that this variation in environmental sensitivity be general across domains. In this study, we focused on neural sensitivity and autonomic arousal to test domain generality. Neural sensitivity can be assessed by correlating measures of perceptual sensitivity, as indexed by event-related potentials (ERP) in electrophysiology. The sensitivity of autonomic arousal can be tested via heart rate changes. Domain generality was tested by comparing associations in perceptual sensitivity across auditory and visual domains, and associations between sensitivity in sensory domains and heart rate. We contrasted ERP components in auditory (P3) and visual (P1, N290 and P4) detection-of-difference tasks for N = 68 infants longitudinally at 6 and 12 months of age. Domain generality should produce correlated individual differences in sensitivity across the two modalities, with higher levels of autonomic arousal associating with increased perceptual sensitivity. Having controlled for multiple comparisons, at 6 months of age, the difference in amplitude of the P3 component evoked in response to standard and deviant tones correlated with the difference in amplitude of the P1 N290 and P4 face-sensitive components evoked in response to fearful and neutral faces. However, this correlation was not found at 12 months of age. Similarly, autonomic arousal correlated with neural sensitivity at 6 months but not at 12 months. The results suggest bottom-up neural perceptual sensitivity is domain-general across auditory and visual domains and is related to autonomic arousal at 6 months but not at 12 months of age. We interpret the development of the association of these markers of ES within a neuroconstructivist framework and with respect to the concept of interactive specialisation. By 12 months of age, more experience of visual processing may have led to top-down endogenous attention mechanisms that process visual information in a way that no longer associates with automatic auditory perceptual sensitivity

    Automatic classification of ICA components from infant EEG using MARA.

    Get PDF
    Automated systems for identifying and removing non-neural ICA components are growing in popularity among EEG researchers of adult populations. Infant EEG data differs in many ways from adult EEG data, but there exists almost no specific system for automated classification of source components from paediatric populations. Here, we adapt one of the most popular systems for adult ICA component classification for use with infant EEG data. Our adapted classifier significantly outperformed the original adult classifier on samples of naturalistic free play EEG data recorded from 10 to 12-month-old infants, achieving agreement rates with the manual classification of over 75% across two validation studies (n = 44, n = 25). Additionally, we examined both classifiers' ability to remove stereotyped ocular artifact from a basic visual processing ERP dataset compared to manual ICA data cleaning. Here, the new classifier performed on level with expert manual cleaning and was again significantly better than the adult classifier at removing artifact whilst retaining a greater amount of genuine neural signal operationalised through comparing ERP activations in time and space. Our new system (iMARA) offers developmental EEG researchers a flexible tool for automatic identification and removal of artifactual ICA components

    DEEP: A dual EEG pipeline for developmental hyperscanning studies

    Get PDF
    Cutting-edge hyperscanning methods led to a paradigm shift in social neuroscience. It allowed researchers to measure dynamic mutual alignment of neural processes between two or more individuals in naturalistic contexts. The ever-growing interest in hyperscanning research calls for the development of transparent and validated data analysis methods to further advance the field. We have developed and tested a dual electroencephalography (EEG) analysis pipeline, namely DEEP. Following the preprocessing of the data, DEEP allows users to calculate Phase Locking Values (PLVs) and cross-frequency PLVs as indices of inter-brain phase alignment of dyads as well as time-frequency responses and EEG power for each participant. The pipeline also includes scripts to control for spurious correlations. Our goal is to contribute to open and reproducible science practices by making DEEP publicly available together with an example mother-infant EEG hyperscanning dataset

    DEEP: A dual EEG pipeline for developmental hyperscanning studies

    Get PDF
    Cutting-edge hyperscanning methods led to a paradigm shift in social neuroscience. It allowed researchers to measure dynamic mutual alignment of neural processes between two or more individuals in naturalistic contexts. The ever-growing interest in hyperscanning research calls for the development of transparent and validated data analysis methods to further advance the field. We have developed and tested a dual electroencephalography (EEG) analysis pipeline, namely DEEP. Following the preprocessing of the data, DEEP allows users to calculate Phase Locking Values (PLVs) and cross-frequency PLVs as indices of inter-brain phase alignment of dyads as well as time-frequency responses and EEG power for each participant. The pipeline also includes scripts to control for spurious correlations. Our goal is to contribute to open and reproducible science practices by making DEEP publicly available together with an example mother-infant EEG hyperscanning dataset

    The neural and physiological substrates of real-world attention change across development.

    Get PDF
    The ability to allocate and maintain visual attention enables us to adaptively regulate perception and action, guiding strategic behaviour within complex, dynamic environments. This capacity to regulate attention develops rapidly over the early years of life, and underpins all subsequent cognitive development and learning. From screen-based experiments we know something about how attention control is instantiated in the developing brain, but we currently understand little about the development of the capacity for attention control within complex, dynamic, real-world settings. To address this, we recorded brain activity, autonomic arousal and spontaneous attention patterns in N=58 5- and 10-month-old infants during free play. We used time series analyses to examine whether changes in autonomic arousal and brain activity anticipate attention changes or follow on from them. Early in infancy, slow-varying fluctuations in autonomic arousal forward-predicted attentional behaviours, but cortical activity did not. By later infancy, fluctuations in fronto-central theta power associated with changes in infants’ attentiveness and predicted the length of infants’ attention durations. But crucially, changes in cortical power followed, rather than preceded, infants’ attention shifts, suggesting that processes after an attention shift determine how long that episode will last. We also found that changes in fronto-central theta power modulated changes in arousal at 10 but not 5 months. Collectively, our results suggest that the modulation of real-world attention involves both arousal-based and cortical processes but point to an important developmental transition. As development progresses, attention control systems become dynamically integrated and cortical processes gain greater control over modulating both arousal and attention in naturalistic real-world settings

    Meat eating and nutritional quality of lambs sired by high and low muscle density rams

    Get PDF
    Intramuscular fat (IMF) content affects eating and nutritional quality of lamb meat. Muscle density measured by computer tomography is an in vivo proxy measure of IMF content that affects eating and nutritional quality of lamb meat. Lambs sired by high muscle density (HMD) or low muscle density (LMD) rams, selected for slaughter on commercial criteria were measured for meat quality and nutritional traits. A restricted maximum likelihood model was used to compare lamb traits. Additionally, regression analysis of sire estimated breeding value (EBV) for muscle density was performed for each meat quality trait. Muscle density EBV had a negative regression with IMF content (P < 0.001). For each unit increase in muscle density EBV, there was a significant decrease in loin (− 1.69 mg/100 g fresh weight) and topside IMF (− 0.03 mg/100 g fresh weight). Muscle density EBV had a negative regression with grouped saturated and monounsaturated fatty acids concentration (and monounsaturated proportion P < 0.001). Muscle density EBV had a negative regression with loin sensory traits tenderness, juiciness and overall liking and many novel tenderness sensory traits measured (P < 0.05). Selecting for LMD EBV increased IMF content and favourable meat eating quality traits. In contrast, sire muscle density EBV had a positive regression with loin polyunsaturated:saturated fat ratio and grouped polyunsaturated proportion traits (including total polyunsaturated proportion, total omega-6 (n-6) and total omega-3 (n-3) fatty acids (P < 0.001). This is explained by the fact that as sire muscle density EBV increases, polyunsaturated fatty acid proportion increases and the proportion of saturated and monounsaturated fatty acid content decreases. Muscle density EBV had a positive regression with shear force and the novel toughness sensory traits (P < 0.05). Selection for HMD EBV's increased shear force and toughness traits, which is unfavourable for the consumer. Low muscle density sired meat had higher meat colour traits chroma/saturation (+ 0.64, SD 2.30, P = 0.012), redness (+ 0.52, SD 1.91, P = 0.012) and yellowness (+ 0.31, SD 1.49, P = 0.08) compared to HMD sired meat. Selection for LMD could be used within a breeding programme to increase IMF content and enhance both meat colour and improve eating quality parameters

    Associations between lamb survival and prion protein genotype: analysis of data for ten sheep breeds in Great Britain

    Get PDF
    BACKGROUND: Selective breeding programmes, based on prion protein (PrP) genotype, have been introduced throughout the European Union to reduce the risk of sheep transmissible spongiform encephalopathies (TSEs). These programmes could have negative consequences on other important traits, such as fitness and production traits, if the PrP gene has pleiotropic effects or is in linkage disequilibrium with genes affecting these traits. This paper presents the results of an investigation into associations between lamb survival and PrP genotype in ten mainstream sheep breeds in Great Britain (GB). In addition, the reasons for lamb deaths were examined in order to identify any associations between these and PrP genotype. RESULTS: Survival times from birth to weaning were analysed for over 38000 lambs (2427 dead and 36096 live lambs) from 128 flocks using Cox proportional hazard models for each breed, including additive animal genetic effects. No significant associations between PrP genotype and lamb survival were identified, except in the Charollais breed for which there was a higher risk of mortality in lambs of the ARR/VRQ genotype compared with those of the ARR/ARR genotype. Significant effects of birth weight, litter size, sex, age of dam and year of birth on survival were also identified. For all breeds the reasons for death changed significantly with age; however, no significant associations between reason for death and PrP genotype were found for any of the breeds. CONCLUSION: This study found no evidence to suggest that a selective breeding programme based on PrP genotype will have a detrimental effect on lamb survival. The only significant effect of PrP genotype identified was likely to be of little consequence because an increased risk of mortality was associated with a genotype that is selected against in current breeding strategies
    • …
    corecore