8,053 research outputs found

    Non-holonomic Quantum Devices

    Get PDF
    We analyze the possibility and efficiency of non-holonomic control over quantum devices with exponentially large number of Hilbert space dimensions. We show that completely controllable devices of this type can be assembled from elementary units of arbitrary physical nature, and can be employed efficiently for universal quantum computations and simulation of quantum field dynamics.Comment: 8 revtex pages, 4 postscript figure

    Non-Holonomic Control III : Coherence Protection by the Quantum Zeno Effect and Non-Holonomic Control

    Full text link
    In this paper, we present a coherence protection method based upon a multidimensional generalization of the Quantum Zeno Effect, as well as ideas from the coding theory. The non-holonomic control technique is employed as a physical tool which allows its effective implementation. The two limiting cases of small and large quantum systems are considered

    Non-Holonomic Control IV : Coherence Protection in a Rubidium isotope

    Full text link
    In this paper, we present a realistic application of the coherence protection method proposed in the previous article. A qubit of information encoded on the two spin states of a Rubidium isotope is protected from the action of electric and magnetic fields

    Maximal-entropy random walk unifies centrality measures

    Full text link
    In this paper analogies between different (dis)similarity matrices are derived. These matrices, which are connected to path enumeration and random walks, are used in community detection methods or in computation of centrality measures for complex networks. The focus is on a number of known centrality measures, which inherit the connections established for similarity matrices. These measures are based on the principal eigenvector of the adjacency matrix, path enumeration, as well as on the stationary state, stochastic matrix or mean first-passage times of a random walk. Particular attention is paid to the maximal-entropy random walk, which serves as a very distinct alternative to the ordinary random walk used in network analysis. The various importance measures, defined both with the use of ordinary random walk and the maximal-entropy random walk, are compared numerically on a set of benchmark graphs. It is shown that groups of centrality measures defined with the two random walks cluster into two separate families. In particular, the group of centralities for the maximal-entropy random walk, connected to the eigenvector centrality and path enumeration, is strongly distinct from all the other measures and produces largely equivalent results.Comment: 7 pages, 2 figure

    Non-Holonomic Control I

    Full text link
    In this paper, we present a universal control technique, the non-holonomic control, which allows us to impose any arbitrarily prescribed unitary evolution to any quantum system through the alternate application of two well-chosen perturbations
    corecore