1,028 research outputs found
Integrating photovoltaic cells into decorative architectural glass using traditonal glasspainting techniques and fluorescent dyes
Photovoltaic cells can be integrated into decorative glass, providing a showcase for this renewable technology,
whilst assisting in the creation of sustainable architecture through generation of electricity from the building surface. However, traditional, opaque, square, crystalline-silicon solar cells contrast strongly with their
surroundings when incorporated into translucent, coloured glazing. Methods of blending photovoltaic cells into
their surroundings were developed, using traditional glass painting techniques. A design was created in which
opaque paint was applied to the areas of glass around underlying photovoltaic cells. Translucent, platinum paint
was used on the glass behind the photovoltaic cells. This covered the grey cell backs whilst reflecting light and
movement. The platinum paint was shown to cause a slight increase in power produced by photovoltaic cells
placed above it. To add colour, very small amounts of Lumogen F dye (BASF) were incorporated into a silicone
encapsulant (Dow Corning, Sylgard 184), which was then used hold photovoltaic cells in place between sheets of
painted glass. Lumogen dyes selectively absorb and emit light, giving a good balance between colour addition
and electricity production from underlying photovoltaic cells. When making sufficient quantities of dyed
encapsulant for a 600 x 450 mm test piece, the brightness of the dye colours faded, and fluorescence decreased,
although some colour was retained. Improvement of the method, including testing of alternative encapsulant
materials, is required, to ensure that the dyes continue to fluoresce within the encapsulant. In contrast, the
methods of adding opacity variation to glass, through use of glass painting, are straightforward to develop for use
in a wide variety of photovoltaic installations. Improvement of these methods opens up a wide variety of
architectural glass design opportunities with integrated photovoltaics, providing an example of one new medium
to make eco-architecture more aesthetically pleasing, whilst generating electricity
Recommended from our members
Creative use of BIPV materials: barriers and solutions
Inventive use of photovoltaic (PV) materials in architecture can be developed through use of PV in artworks. This is particularly important in increasing the uptake of building-integrated building-integrated photovoltaics (BIPV), by developing novel methods of combining and installing PV materials. Current examples of PV artwork and design are examined, from small to large scale, to assess the current design limitations. The design of two PV artworks is discussed in detail, including an artwork that uses the principle of the luminescent solar concentrator (LSC), to show the way in which design hurdles are discovered and overcome. Challenges range from difficulties in obtaining small quantities of PV materials; the balance between efficiency and artistic effect; through to technical and siting issues that an artist must address when designing a functional PV structure. Methods of overcoming these barriers are explored, including the use of lumogen dyes in encapsulant materials
Improving the aesthetics of photovoltaics in decorative architectural glass
Increasing colour variety in photovoltaics can improve the uptake of this renewable technology, which is vital to the creation of sustainable architecture. However, the introduction of colour into photovoltaics often involves increased cost and decreased efficiency. A method was found to add colour to photovoltaics, using luminescent materials: fluorescent organic dyes (BASF Lumogen). These selectively absorb and emit light, giving a good balance between colour addition and electricity production from underlying photovoltaic cells. Very small amounts of Lumogen dye were added to a silicone encapsulant (Dow Corning Sylgard 184), which was then used hold photovoltaic cells in place between sheets of painted glass. When making sufficient quantities of dyed encapsulant for a 600 x 450 mm testpiece, the dye colours faded, with low levels of fluorescence, although some colour was retained. Improvement of the method, including testing of alternative encapsulant materials, is required, to ensure that the dyes continue to fluoresce within the encapsulant. Although the Lumogen dyes are quite stable when compared to other dye molecules, in general organic dyes are not yet sufficiently durable to make this technology viable for installations that are to last for more than 20 years: the guaranteed lifetime of standard photovoltaic modules. Dye replenishment, or replacement of materials, will be required; or a product with a shorter ‘useful’ lifetime identified. This method opens up a wide variety of architectural glass design opportunities that incorporate photovoltaics, providing an example of one new medium to make eco-architecture more aesthetically pleasing, whilst generating electricity
Recommended from our members
A silicone host for Lumogen dyes
Altering the encapsulant colour in photovoltaic (PV) modules is a straightforward way of achieving greater colour range whilst minimising additional cost in PV systems. Lumogen fluorescent, organic dyes offer a way of adding colour to the encapsulant with minimal change in efficiency. The silicone encapsulant material Sylgard 184 is tested as a host material for Lumogen dyes. A method of dissolving various Lumogen dyes in Sylgard is investigated, and limits of solubility are explored. Methods of preparing samples suitable for optical measurements are found. Optical density is measured for a range of dye concentrations. The results indicate that Lumogen dyes can be dissolved successfully within Sylgard 184, giving good optical properties for lower dye concentrations. Initial photoluminescent quantum yield measurements confirm that Lumogen dyes can function effectively within a Sylgard host. This is promising for use of this material combination in the creation of coloured, fluorescent PV encapsulant layers
Recommended from our members
The search for building-integrated PV materials with good aesthetic potential: a survey
Building-integrated photovoltaics (PV) is currently dominated by blue and black rectilinear forms. Greater variety of colour and form could lead to much better uptake of PV in the built environment, also increasing the potential for PV to be used as an artistic material. Listing the available PV technologies by colour gives a clearer picture of the current situation. An assessment of photostability, efficiency and price, for each material, indicates the materials that have the potential to fill the gaps in the colour spectrum. Use of combinations of materials that can be fabricated in different ways from the current, standardised, PV modules will further increase the possibilities for use in building integration, Extending the lifetimes of organic PV, dye-sensitised PV or luminescent solar concentrators will increase the possibilities for development of new PV products
Recommended from our members
Improving the aesthetics of photovoltaics through use of coloured encapsulants
Photovoltaics (solar cells) are important in the creation of sustainable architecture, but are difficult to integrate into a wide variety of architectural styles, which is necessary if this technology is to be extensively used. Adding variety to the colour range in these installations will provide a way of making this solar energy technology more visually exciting, so methods need to be found to add colour at minimal extra cost, without loss of efficiency. Adding colour to photovoltaic encapsulant materials offers a solution. It is shown that fluorescent, organic Lumogen dyes (BASF) can be added to the photovoltaic encapsulant materials Sylgard 184 (Dow Corning) and EVA (Ethylene Vinyl Acetate). The dyes continue to fluoresce within these host materials. Encapsulating a photovoltaic cell with Sylgard containing Lumogen red 300 dye (BASF) demonstrates that light can be transported to a photovoltaic cell by the fluorescent dyes inside the encapsulant material that surrounds the cell. This slightly improves the electricity output from the photovoltaic cell, and is especially promising for use in light-transmissive photovoltaic arrays incorporating widely-spaced photovoltaic cells, such as architectural glass art that incorporates photovoltaics. Further work is needed to test and improve the performance of the dyes over time, to ensure that installations incorporating this technology can last for the minimum twenty years that is the current industry standard for photovoltaics
A multi-level developmental approach to exploring individual differences in Down syndrome: genes, brain, behaviour, and environment.
In this article, we focus on the causes of individual differences in Down syndrome (DS), exemplifying the multi-level, multi-method, lifespan developmental approach advocated by Karmiloff-Smith (1998, 2009, 2012, 2016). We evaluate the possibility of linking variations in infant and child development with variations in the (elevated) risk for Alzheimer's disease (AD) in adults with DS. We review the theoretical basis for this argument, considering genetics, epigenetics, brain, behaviour and environment. In studies 1 and 2, we focus on variation in language development. We utilise data from the MacArthur-Bates Communicative Development Inventories (CDI; Fenson et al., 2007), and Mullen Scales of Early Learning (MSEL) receptive and productive language subscales (Mullen, 1995) from 84 infants and children with DS (mean age 2;3, range 0;7 to 5;3). As expected, there was developmental delay in both receptive and expressive vocabulary and wide individual differences. Study 1 examined the influence of an environmental measure (socio-economic status as measured by parental occupation) on the observed variability. SES did not predict a reliable amount of the variation. Study 2 examined the predictive power of a specific genetic measure (apolipoprotein APOE genotype) which modulates risk for AD in adulthood. There was no reliable effect of APOE genotype, though weak evidence that development was faster for the genotype conferring greater AD risk (ε4 carriers), consistent with recent observations in infant attention (D'Souza, Mason et al., 2020). Study 3 considered the concerted effect of the DS genotype on early brain development. We describe new magnetic resonance imaging methods for measuring prenatal and neonatal brain structure in DS (e.g., volumes of supratentorial brain, cortex, cerebellar volume; Patkee et al., 2019). We establish the methodological viability of linking differences in early brain structure to measures of infant cognitive development, measured by the MSEL, as a potential early marker of clinical relevance. Five case studies are presented as proof of concept, but these are as yet too few to discern a pattern
The role of mentorship in protege performance
The role of mentorship on protege performance is a matter of importance to
academic, business, and governmental organizations. While the benefits of
mentorship for proteges, mentors and their organizations are apparent, the
extent to which proteges mimic their mentors' career choices and acquire their
mentorship skills is unclear. Here, we investigate one aspect of mentor
emulation by studying mentorship fecundity---the number of proteges a mentor
trains---with data from the Mathematics Genealogy Project, which tracks the
mentorship record of thousands of mathematicians over several centuries. We
demonstrate that fecundity among academic mathematicians is correlated with
other measures of academic success. We also find that the average fecundity of
mentors remains stable over 60 years of recorded mentorship. We further uncover
three significant correlations in mentorship fecundity. First, mentors with
small mentorship fecundity train proteges that go on to have a 37% larger than
expected mentorship fecundity. Second, in the first third of their career,
mentors with large fecundity train proteges that go on to have a 29% larger
than expected fecundity. Finally, in the last third of their career, mentors
with large fecundity train proteges that go on to have a 31% smaller than
expected fecundity.Comment: 23 pages double-spaced, 4 figure
A Systematic Review of Online Sex Addiction and Clinical Treatments Using CONSORT Evaluation
Researchers have suggested that the advances of the Internet over the past two decades have gradually eliminated traditional offline methods of obtaining sexual material. Additionally, research on cybersex and/or online sex addictions has increased alongside the development of online technology. The present study extended the findings from Griffiths’ (2012) systematic empirical review of online sex addiction by additionally investigating empirical studies that implemented and/or documented clinical treatments for online sex addiction in adults. A total of nine studies were identified and then each underwent a CONSORT evaluation. The main findings of the present review provide some evidence to suggest that some treatments (both psychological and/or pharmacological) provide positive outcomes among those experiencing difficulties with online sex addiction. Similar to Griffiths’ original review, this study recommends that further research is warranted to establish the efficacy of empirically driven treatments for online sex addiction
Information inequalities and Generalized Graph Entropies
In this article, we discuss the problem of establishing relations between
information measures assessed for network structures. Two types of entropy
based measures namely, the Shannon entropy and its generalization, the
R\'{e}nyi entropy have been considered for this study. Our main results involve
establishing formal relationship, in the form of implicit inequalities, between
these two kinds of measures when defined for graphs. Further, we also state and
prove inequalities connecting the classical partition-based graph entropies and
the functional-based entropy measures. In addition, several explicit
inequalities are derived for special classes of graphs.Comment: A preliminary version. To be submitted to a journa
- …