20 research outputs found

    Modulation of ligand-heme reactivity by binding pocket residues demonstrated in cytochrome c' over the femtosecond-second temporal range

    Get PDF
    The ability of hemoproteins to discriminate between diatomic molecules, and the subsequent affinity for their chosen ligand, is fundamental to the existence of life. These processes are often controlled by precise structural arrangements in proteins, with heme pocket residues driving reactivity and specificity. One such protein is cytochrome c', which has the ability to bind nitric oxide (NO) and carbon monoxide (CO) on opposite faces of the heme, a property that is shared with soluble guanylate cycle. Like soluble guanylate cyclase, cytochrome c' also excludes O completely from the binding pocket. Previous studies have shown that the NO binding mechanism is regulated by a proximal arginine residue (R124) and a distal leucine residue (L16). Here, we have investigated the roles of these residues in maintaining the affinity for NO in the heme binding environment by using various time-resolved spectroscopy techniques that span the entire femtosecond-second temporal range in the UV-vis spectrum, and the femtosecond-nanosecond range by IR spectroscopy. Our findings indicate that the tightly regulated NO rebinding events following excitation in wild-type cytochrome c' are affected in the R124A variant. In the R124A variant, vibrational and electronic changes extend continuously across all time scales (from fs-s), in contrast to wild-type cytochrome c' and the L16A variant. Based on these findings, we propose a NO (re)binding mechanism for the R124A variant of cytochrome c' that is distinct from that in wild-type cytochrome c'. In the wider context, these findings emphasize the importance of heme pocket architecture in maintaining the reactivity of hemoproteins towards their chosen ligand, and demonstrate the power of spectroscopic probes spanning a wide temporal range. © 2013 FEBS.

    Photochemical Spin Dynamics of the Vitamin B12 Derivative, Methylcobalamin

    Get PDF
    Derivatives of vitamin B12 are six-coordinate cobalt corrinoids found in humans, other animals and micro-organisms. By acting as enzymatic cofactors and photoreceptor chromophores they serve vital metabolic and photoprotective functions. Depending on the context, the chemical mechanisms of the biologically-active derivatives of B12 – methylcobalamin (MeCbl) and 5’-deoxyadenosylcobalamin (AdoCbl) – can be very different from one another. The extent to which this chemistry is tuned by the upper axial ligand, however, is not yet clear. Here, we have used a combination of time-resolved FT-EPR, magnetic field effect experiments and spin dynamic simulations to reveal that the upper axial ligand alone only results in relatively minor changes to the photochemical spin dynamics of B12. By studying the photolysis of MeCbl, we find that, much like for AdoCbl, the initial (or ‘geminate’) radical pairs are born predominantly in the singlet spin-state and thus originate from singlet excited-state precursors. This is in contrast to the triplet radical pairs and precursors proposed previously. Unlike AdoCbl, the extent of geminate recombination is limited following MeCbl photolysis, resulting in significant distortions to the FT-EPR signal caused by polarization from spin-correlated methyl-methyl radical ‘f-pairs’ formed following rapid diffusion. Despite the photophysical mechanism that precedes photolysis of MeCbl showing a wavelength-dependence, the subsequent spin dynamics appear to be largely independent of excitation wavelength, again much like for AdoCbl. Our data finally provide clarity to what in the literature to date has been a confused and contradictory picture. We conclude that, although the upper axial position of MeCbl and AdoCbl does impact their reactivity to some extent, the remarkable biochemical diversity of these fascinating molecules is most likely a result of tuning by their protein environment

    Direct Evidence of an Excited-State Triplet Species upon Photoactivation of the Chlorophyll Precursor Protochlorophyllide

    Get PDF
    The chlorophyll precursor protochlorophyllide (Pchlide), which is the substrate for the light-driven enzyme protochlorophyllide oxidoreductase, has unique excited-state properties that facilitate photocatalysis. Previous time-resolved spectroscopy measurements have implied that a long-lived triplet state is formed during the excited-state relaxation of Pchlide, although direct evidence of its existence is still lacking. Here we use time-resolved electron paramagnetic resonance (EPR) in combination with time-resolved absorption measurements at a range of temperatures (10–290 K), solvents, and oxygen concentrations to provide a detailed characterization of the triplet state of Pchlide. The triplet decays in a biphasic, oxygen-dependent manner, while the first reported EPR signature of a Pchlide triplet displays both emissive and absorptive features and an antisymmetric spectrum similar to other porphyrin triplet states. This work demonstrates that the Pchlide triplet is accessible to various cryogenic spectroscopic probes over a range of time scales and paves the way for understanding its potential role in catalysis

    PH Dependence of Ultrafast Charge Dynamics in Graphene Oxide Dispersions

    No full text
    10.1021/acs.jpcc.9b01060Journal of Physical Chemistry C1231610677-1068

    Ultrafast Trap State-Mediated Electron Transfer for Quantum Dot Redox Sensing

    No full text
    Quantum dots (QDs) conjugated to electron acceptor ligands are useful as redox sensors in applications ranging from chemical detection to bioimaging. We aimed to improve effectiveness of these redox-sensing QD conjugates, which depends on the initial charge separation and on the competing mechanisms of recombination, including luminescence and electron transfer to the conjugated redox molecules. In this study, ultrafast laser measurements were used to study the excited state dynamics in CdTe/CdS core/shell QDs with quinone/quinol acceptor (Q2NS) ligands attached to the surface (up to 40 per QD). Detailed analysis, along with computational modeling of the system, showed multiple electron-transfer pathways and identified an ultrafast electron transfer from a surface electron trap state to the quinone ligands (2–8 ps). We propose that this leads to high, redox-dependent, quenching efficiencies (98.7% with an average of 10 quinone/quinols on the surface). As only low populations of redox ligands are required, the colloidal properties of the QD are preserved, which allows for further functionalization. These new insights into the excited state properties and ultrafast charge transfer have important implications for fields exploring charge extraction from quantum dots, which range from bioimaging to solar energy technology
    corecore