522 research outputs found

    Extracellular Calcium Regulates Postsynaptic Efficacy through Group 1 Metabotropic Glutamate Receptors

    Full text link
    Bursts of synaptic transmission are known to induce transient depletion of Ca2+ within the synaptic cleft. Although Ca2+ depletion has been shown to lower presynaptic release probability, effects on the postsynaptic cell have not been reported. In this study, we show that physiologically relevant reductions in extracellular Ca2+ lead to a decrease in synaptic strength between synaptically coupled layer 2/3 cortical pyramidal neurons. Using quantal analysis and mEPSP analysis, we demonstrate that a lowered extracellular Ca2+ produces a reduction in the postsynaptic quantal size in addition to its known effect on release probability. An elevated Mg2+ level can prevent this reduction in postsynaptic efficacy at subphysiological Ca2+ levels. We show that the calcium-dependent effect on postsynaptic quantal size is mediated by group 1 metabotropic glutamate receptors, acting via CaMKII (Ca2+/calmodulin-dependent protein kinase II) and PKC. Therefore, physiologically relevant changes in extracellular Ca2+ can regulate information transfer at cortical synapses via both presynaptic and postsynaptic mechanisms

    Prognostic impact and the relevance of PTEN copy number alterations in patients with advanced colorectal cancer (CRC) receiving bevacizumab

    Get PDF
    Article first published online: 25 MAR 2013Loss of phosphatase and tensin homologue (PTEN) expression may be prognostic in colorectal cancer (CRC) and may have a correlation with vascular endothelial growth factor (VEGF) expression via hypoxia-inducible factor 1 (HIF-1) alpha, and the PI3K/mTOR pathways. We therefore have explored the prognostic association of PTEN loss and the potential that PTEN loss may be predictive of outcome with bevacizumab. Patients enrolled in the AGITG MAX trial, a randomized Phase III trial of capecitabine (C) +/− bevacizumab (B) (+/− mitomycin C [M]) with available tissues were analyzed for PTEN expression (loss vs. no loss) as assessed using a Taqman® copy number assay (CNA). Of the original 471 patients enrolled, tissues from 302 (64.1%) patients were analyzed. PTEN loss was observed in 38.7% of patients. There was no relationship between PTEN loss and KRAS or BRAF mutation. PTEN status was not prognostic for progression-free survival (PFS) or overall survival (OS) in multivariate analyses adjusting for other baseline factors; loss versus no loss PFS hazard ratio (HR) 0.9 (0.7–1.16), OS HR 1.04 (0.79–1.38). PTEN was not prognostic when assessed by KRAS and BRAF status. By using the comparison of C versus CB+CBM, PTEN status was not significantly predictive of the effectiveness of B for PFS or OS. PTEN status was not prognostic for survival in advanced colorectal cancer, irrespective of KRAS or BRAF status. PTEN status did not significantly predict different benefit with bevacizumb therapy.Timothy J. Price, Jennifer E. Hardingham, Chee K. Lee, Amanda R. Townsend, Joseph W. Wrin, Kate Wilson, Andrew Weickhardt, Robert J. Simes, Carmel Murone & Niall C. Tebbut

    Caldendrin–Jacob: A Protein Liaison That Couples NMDA Receptor Signalling to the Nucleus

    Get PDF
    NMDA (N-methyl-D-aspartate) receptors and calcium can exert multiple and very divergent effects within neuronal cells, thereby impacting opposing occurrences such as synaptic plasticity and neuronal degeneration. The neuronal Ca2+ sensor Caldendrin is a postsynaptic density component with high similarity to calmodulin. Jacob, a recently identified Caldendrin binding partner, is a novel protein abundantly expressed in limbic brain and cerebral cortex. Strictly depending upon activation of NMDA-type glutamate receptors, Jacob is recruited to neuronal nuclei, resulting in a rapid stripping of synaptic contacts and in a drastically altered morphology of the dendritic tree. Jacob's nuclear trafficking from distal dendrites crucially requires the classical Importin pathway. Caldendrin binds to Jacob's nuclear localization signal in a Ca2+-dependent manner, thereby controlling Jacob's extranuclear localization by competing with the binding of Importin-α to Jacob's nuclear localization signal. This competition requires sustained synapto-dendritic Ca2+ levels, which presumably cannot be achieved by activation of extrasynaptic NMDA receptors, but are confined to Ca2+ microdomains such as postsynaptic spines. Extrasynaptic NMDA receptors, as opposed to their synaptic counterparts, trigger the cAMP response element-binding protein (CREB) shut-off pathway, and cell death. We found that nuclear knockdown of Jacob prevents CREB shut-off after extrasynaptic NMDA receptor activation, whereas its nuclear overexpression induces CREB shut-off without NMDA receptor stimulation. Importantly, nuclear knockdown of Jacob attenuates NMDA-induced loss of synaptic contacts, and neuronal degeneration. This defines a novel mechanism of synapse-to-nucleus communication via a synaptic Ca2+-sensor protein, which links the activity of NMDA receptors to nuclear signalling events involved in modelling synapto-dendritic input and NMDA receptor–induced cellular degeneration

    Derangement of Ras-Guanine Nucleotide-Releasing Factor 1 (Ras-GRF1) and Extracellular Signal-Regulated Kinase (ERK) Dependent Striatal Plasticity in L-DOPA-Induced Dyskinesia

    Get PDF
    BACKGROUND: Bidirectional long-term plasticity at the corticostriatal synapse has been proposed as a central cellular mechanism governing dopamine-mediated behavioral adaptations in the basal ganglia system. Balanced activity of medium spiny neurons (MSNs) in the direct and the indirect pathways is essential for normal striatal function. This balance is disrupted in Parkinson's disease and in L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID), a common motor complication of current pharmacotherapy of Parkinson's disease. METHODS: Electrophysiological recordings were performed in mouse cortico-striatal slice preparation. Synaptic plasticity, such as long-term potentiation (LTP) and depotentiation, was investigated. Specific pharmacological inhibitors or genetic manipulations were used to modulate the Ras-extracellular signal-regulated kinase (Ras-ERK) pathway, a signal transduction cascade implicated in behavioral plasticity, and synaptic activity in different subpopulations of striatal neurons was measured. RESULTS: We found that the Ras-ERK pathway, is not only essential for long-term potentiation induced with a high frequency stimulation protocol (HFS-LTP) in the dorsal striatum, but also for its reversal, synaptic depotentiation. Ablation of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1), a neuronal activator of Ras proteins, causes a specific loss of HFS-LTP in the medium spiny neurons in the direct pathway without affecting LTP in the indirect pathway. Analysis of LTP in animals with unilateral 6-hydroxydopamine lesions (6-OHDA) rendered dyskinetic with chronic L-DOPA treatment reveals a complex, Ras-GRF1 and pathway-independent, apparently stochastic involvement of ERK. CONCLUSIONS: These data not only demonstrate a central role for Ras-ERK signaling in striatal LTP, depotentiation, and LTP restored after L-DOPA treatment but also disclose multifaceted synaptic adaptations occurring in response to dopaminergic denervation and pulsatile administration of L-DOPA

    Optimisation of the RT-PCR detection of immunomagnetically enriched carcinoma cells

    Get PDF
    BACKGROUND: Immunomagnetic enrichment followed by RT-PCR (immunobead RT-PCR) is an efficient methodology to identify disseminated carcinoma cells in the blood and bone marrow. The RT-PCR assays must be both specific for the tumor cells and sufficiently sensitive to enable detection of single tumor cells. We have developed a method to test RT-PCR assays for any cancer. This has been investigated using a panel of RT-PCR markers suitable for the detection of breast cancer cells. METHODS: In the assay, a single cell line-derived tumor cell is added to 100 peripheral blood mononuclear cells (PBMNCs) after which mRNA is isolated and reverse transcribed for RT-PCR analysis. PBMNCs without added tumor cells are used as specificity controls. The previously studied markers epidermal growth factor receptor (EGFR), mammaglobin 1 (MGB1), epithelial cell adhesion molecule (EpCAM/TACSTD1), mucin 1 (MUC1), carcinoembryonic antigen (CEA) were tested. Two new epithelial-specific markers ELF3 and EphB4 were also tested. RESULTS: MUC1 was unsuitable as strong amplification was detected in 100 cell PBMNC controls. Expression of ELF3, EphB4, EpCAM, EGFR, CEA and MGB1 was found to be both specific for the tumor cell, as demonstrated by the absence of a signal in most 100 cell PBMNC controls, and sensitive enough to detect a single tumor cell in 100 PBMNCs using a single round of RT-PCR. CONCLUSIONS: ELF3, EphB4, EpCAM, EGFR, CEA and MGB1 are appropriate RT-PCR markers for use in a marker panel to detect disseminated breast cancer cells after immunomagnetic enrichment

    Structure and Thermoelectric Properties of Bi2−xSbxTe3 Nanowires Grown in Flexible Nanoporous Polycarbonate Templates

    Get PDF
    We report the room-temperature growth of vertically aligned ternary Bi2x_{2-x}Sbx_xTe3_3 nanowires of diameter ~200 nm and length ~12 μm, within flexible track-etched nanoporous polycarbonate (PC) templates via a one-step electrodeposition process. Bi2x_{2-x}Sbx_xTe3_3 nanowires with compositions spanning the entire range from pure Bi2_2Te3_3 (xx = 0) to pure Sb2_2Te3_3 (xx = 2) were systematically grown within the nanoporous channels of PC templates from a tartaric-nitric acid based electrolyte, at the end of which highly crystalline nanowires of uniform composition were obtained. Compositional analysis showed that the Sb concentration could be tuned by simply varying the electrolyte composition without any need for further annealing of the samples. Thermoelectric properties of the Bi2x_{2-x}Sbx_xTe3_3 nanowires were measured using a standardized bespoke setup while they were still embedded within the flexible PC templates.We acknowledge funding from the European Research Council through an ERC Starting Grant (Grant no. ERC-2014-STG-639526, NANOGEN), the Engineering and Physical Sciences Research Council (EPSRC), UK and the Isaac Newton Trust, University of Cambridge

    The Subtype of GluN2 C-terminal Domain Determines the Response to Excitotoxic Insults

    Get PDF
    It is currently unclear whether the GluN2 subtype influences NMDA receptor (NMDAR) excitotoxicity. We report that the toxicity of NMDAR-mediated Ca(2+) influx is differentially controlled by the cytoplasmic C-terminal domains of GluN2B (CTD(2B)) and GluN2A (CTD(2A)). Studying the effects of acute expression of GluN2A/2B-based chimeric subunits with reciprocal exchanges of their CTDs revealed that CTD(2B) enhances NMDAR toxicity, compared to CTD(2A). Furthermore, the vulnerability of forebrain neurons in vitro and in vivo to NMDAR-dependent Ca(2+) influx is lowered by replacing the CTD of GluN2B with that of GluN2A by targeted exon exchange in a mouse knockin model. Mechanistically, CTD(2B) exhibits stronger physical/functional coupling to the PSD-95-nNOS pathway, which suppresses protective CREB activation. Dependence of NMDAR excitotoxicity on the GluN2 CTD subtype can be overcome by inducing high levels of NMDAR activity. Thus, the identity (2A versus 2B) of the GluN2 CTD controls the toxicity dose-response to episodes of NMDAR activity

    Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis

    Get PDF
    ARM is a Lady Edith Wolfson Clinical Fellow and is jointly funded by the Medical Research Council (MRC) and the Motor Neurone Disease Association (MR/R001162/1). He also acknowledges support from the Rowling Scholars scheme, administered by the Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, and a seedcorn grant from The Chief Scientist Office and the RS Macdonald Charitable Trust via the Scottish Neurological Research Fund, administered by the University of St Andrews. JMG is funded by a starter grant for clinical lecturers from the Academy of Medical Sciences. CS is supported by a Medical Research Council grant (MR/L016400/1). NMM was funded by a Wellcome Trust New Investigator Award (100981/Z/13/Z). RNC and NMM are funded by a Diabetes UK grant (17/0005697). The Hardingham and Chandran laboratories are supported by the Euan MacDonald Centre for Motor Neurone Disease Research, and the UK Dementia Research Institute (DRI), which receives its funding from UK DRI Ltd, funded by the MRC, Alzheimer's Society and Alzheimer's Research UK. SC also acknowledges funding from the ARRNC, My Name’5 Doddie Foundation, and an MRC Dementias Platform UK Stem Cell Partnership grant (MR/N013255/1). BTS is a Rowling-DRI Fellow.Peer reviewedPublisher PD
    corecore