9 research outputs found

    A Self Consistent Field Formulation of Excited State Mean Field Theory

    Full text link
    We show that, as in Hartree Fock theory, the orbitals for excited state mean field theory can be optimized via a self-consistent one-electron equation in which electron-electron repulsion is accounted for through mean field operators. In addition to showing that this excited state ansatz is sufficiently close to a mean field product state to admit a one-electron formulation, this approach brings the orbital optimization speed to within roughly a factor of two of ground state mean field theory. The approach parallels Hartree Fock theory in multiple ways, including the presence of a commutator condition, a one-electron mean-field working equation, and acceleration via direct inversion in the iterative subspace. When combined with a configuration interaction singles Davidson solver for the excitation coefficients, the self consistent field formulation dramatically reduces the cost of the theory compared to previous approaches based on quasi-Newton descent.Comment: 6 pages, 3 tables, 1 figure, plus supplementary materia

    Studying excited-state-specific perturbation theory on the Thiel set

    Full text link
    We explore the performance of a recently-introduced N5N^5-scaling excited-state-specific second order perturbation theory (ESMP2) on the singlet excitations of the Thiel benchmarking set. We find that, without regularization, ESMP2 is quite sensitive to π\pi system size, performing well in molecules with small π\pi systems but poorly in those with larger π\pi systems. With regularization, ESMP2 is far less sensitive to π\pi system size and shows a higher overall accuracy on the Thiel set than CC2, EOM-CCSD, CC3, and a wide variety of time-dependent density functional approaches. Unsurprisingly, even regularized ESMP2 is less accurate than multi-reference perturbation theory on this test set, which can in part be explained by the set's inclusion of some doubly excited states but none of the strong charge transfer states that often pose challenges for state-averaging. Beyond energetics, we find that the ESMP2 doubles norm offers a relatively low-cost way to test for doubly excited character without the need to define an active space

    OpenFermion: The Electronic Structure Package for Quantum Computers

    Get PDF
    Quantum simulation of chemistry and materials is predicted to be an important application for both near-term and fault-tolerant quantum devices. However, at present, developing and studying algorithms for these problems can be difficult due to the prohibitive amount of domain knowledge required in both the area of chemistry and quantum algorithms. To help bridge this gap and open the field to more researchers, we have developed the OpenFermion software package (www.openfermion.org). OpenFermion is an open-source software library written largely in Python under an Apache 2.0 license, aimed at enabling the simulation of fermionic models and quantum chemistry problems on quantum hardware. Beginning with an interface to common electronic structure packages, it simplifies the translation between a molecular specification and a quantum circuit for solving or studying the electronic structure problem on a quantum computer, minimizing the amount of domain expertise required to enter the field. The package is designed to be extensible and robust, maintaining high software standards in documentation and testing. This release paper outlines the key motivations behind design choices in OpenFermion and discusses some basic OpenFermion functionality which we believe will aid the community in the development of better quantum algorithms and tools for this exciting area of research.Comment: 22 page
    corecore