70 research outputs found

    Suppression of Lung Tumorigenesis by Leucine Zipper/EF Hand–Containing Transmembrane-1

    Get PDF
    Leucine zipper/EF hand-containing transmembrane-1 (LETM1) encodes for the human homologue of yeast Mdm38p, which is a mitochondria-shaping protein of unclear function. However, a previous study demonstrated that LETM1 served as an anchor protein for complex formation between mitochondria and ribosome, and regulated mitochondrial biogenesis.Therefore, we examine the possibility that LETM1 may function to regulate mitochondria and lung tumor growth. In this study, we addressed this question by studying in the effect of adenovirus-mediated LETM1 in the lung cancer cell and lung cancer model mice. To investigate the effects of adenovirus-LETM1 in vitro, we infected with adenovirus-LETM1 in A549 cells. Additionally, in vivo effects of LETM1 were evaluated on K-ras(LA1) mice, human non-small cell lung cancer model mice, by delivering the LETM1 via aerosol through nose-only inhalation system. The effects of LETM1 on lung cancer growth and AMPK related signals were evaluated. Adenovirus-mediated overexpression of LETM1 could induce destruction of mitochondria of lung cancer cells through depleting ATP and AMPK activation. Furthermore, adenoviral-LETM1 also altered Akt signaling and inhibited the cell cycle while facilitating apoptosis. Theses results demonstrated that adenovirus-LETM1 suppressed lung cancer cell growth in vitro and in vivo.Adenovirus-mediated LETM1 may provide a useful target for designing lung tumor prevention and treatment

    Metabolic phenotype-microRNA data fusion analysis of the systemic consequences of Roux-en-Y gastric bypass surgery.

    No full text
    BACKGROUND/OBJECTIVES: Bariatric surgery offers sustained marked weight loss and often remission of type 2 diabetes, yet the mechanisms of establishment of these health benefits are not clear. SUBJECTS/METHODS: We mapped the coordinated systemic responses of gut hormones, the circulating miRNAome and the metabolome in a rat model of Roux-en-Y gastric bypass (RYGB) surgery. RESULTS: The response of circulating microRNAs (miRNAs) to RYGB was striking and selective. Analysis of 14 significantly altered circulating miRNAs within a pathway context was suggestive of modulation of signaling pathways including G protein signaling, neurodegeneration, inflammation, and growth and apoptosis responses. Concomitant alterations in the metabolome indicated increased glucose transport, accelerated glycolysis and inhibited gluconeogenesis in the liver. Of particular significance, we show significantly decreased circulating miRNA-122 levels and a more modest decline in hepatic levels, following surgery. In mechanistic studies, manipulation of miRNA-122 levels in a cell model induced changes in the activity of key enzymes involved in hepatic energy metabolism, glucose transport, glycolysis, tricarboxylic acid cycle, pentose phosphate shunt, fatty-acid oxidation and gluconeogenesis, consistent with the findings of the in vivo surgery-mediated responses, indicating the powerful homeostatic activity of the miRNAs. CONCLUSIONS: The close association between energy metabolism, neuronal signaling and gut microbial metabolites derived from the circulating miRNA, plasma, urine and liver metabolite and gut hormone correlations further supports an enhanced gut-brain signaling, which we suggest is hormonally mediated by both traditional gut hormones and miRNAs. This transomic approach to map the crosstalk between the circulating miRNAome and metabolome offers opportunities to understand complex systems biology within a disease and interventional treatment setting

    Role of metabolically active hormones in the insulin resistance associated with short-term glucocorticoid treatment

    Get PDF
    BACKGROUND: The mechanisms by which glucocorticoid therapy promotes obesity and insulin resistance are incompletely characterized. Modulations of the metabolically active hormones, tumour necrosis factor alpha (TNF alpha), ghrelin, leptin and adiponectin are all implicated in the development of these cardiovascular risk factors. Little is known about the effects of short-term glucocorticoid treatment on levels of these hormones. RESEARCH METHODS AND PROCEDURES: Using a blinded, placebo-controlled approach, we randomised 25 healthy men (mean (SD) age: 24.2 (5.4) years) to 5 days of treatment with either placebo or oral dexamethasone 3 mg twice daily. Fasting plasma TNFα, ghrelin, leptin and adiponectin were measured before and after treatment. RESULTS: Mean changes in all hormones were no different between treatment arms, despite dexamethasone-related increases in body weight, blood pressure, HDL cholesterol and insulin. Changes in calculated indices of insulin sensitivity (HOMA-S, insulin sensitivity index) were strongly related to dexamethasone treatment (p < 0.001). DISCUSSION: Our data do not support a role for TNF alpha, ghrelin, leptin or adiponectin in the insulin resistance associated with short-term glucocorticoid treatment

    Biogenesis and Dynamics of Mitochondria during the Cell Cycle: Significance of 3′UTRs

    Get PDF
    Nowadays, we are facing a renaissance of mitochondria in cancer biology. However, our knowledge of the basic cell biology and on the timing and mechanisms that control the biosynthesis of mitochondrial constituents during progression through the cell cycle of mammalian cells remain largely unknown. Herein, we document the in vivo changes on mitochondrial morphology and dynamics that accompany cellular mitosis, and illustrate the following key points of the biogenesis of mitochondria during progression of liver cells through the cycle: (i) the replication of nuclear and mitochondrial genomes is synchronized during cellular proliferation, (ii) the accretion of OXPHOS proteins is asynchronously regulated during proliferation being the synthesis of β-F1-ATPase and Hsp60 carried out also at G2/M and, (iii) the biosynthesis of cardiolipin is achieved during the S phase, although full development of the mitochondrial membrane potential (ΔΨm) is attained at G2/M. Furthermore, we demonstrate using reporter constructs that the mechanism regulating the accretion of β-F1-ATPase during cellular proliferation is controlled at the level of mRNA translation by the 3′UTR of the transcript. The 3′UTR-driven synthesis of the protein at G2/M is essential for conferring to the daughter cells the original phenotype of the parental cell. Our findings suggest that alterations on this process may promote deregulated β-F1-ATPase expression in human cancer

    The time value of money

    Get PDF
    EC-895; This circular deals with the concept of time and how it effects the "bottom line" of your farm or ranch operation. Five economic concepts related to time are discusse
    corecore