28 research outputs found

    A Unified Model of Crustal Stress Heterogeneity From Borehole Breakouts and Earthquake Focal Mechanisms

    Get PDF
    © 2020. American Geophysical Union. All Rights Reserved. Observations of crustal stress orientation from the regional inversion of earthquake focal mechanisms often conflict with those from borehole breakouts, possibly indicating local stress heterogeneity, either laterally or with depth. To investigate this heterogeneity, we compiled SHmax estimates from previous studies for 57 near-vertical boreholes with measured breakout azimuths across the Los Angeles region. We identified subsets of earthquake focal mechanisms from established earthquake catalogs centered around each borehole with various criteria for maximum depth and maximum lateral distance from the borehole. Each subset was independently inverted for 3-D stress orientation and corresponding SHmax probability distributions, then compared with the corresponding borehole breakout-derived estimate. We find good agreement when both methods sample the basement stress (breakouts are close to the sediment-basement interface), or when both methods sample the mid-basin stress (sufficient earthquakes are present within a sedimentary basin). Along sedimentary basin margins, in contrast, we find acceptable agreement only when focal mechanisms are limited to shallow and close earthquakes, implying short-length-scale heterogeneity of heterogeneity, we find a more homogeneous stress state within basement rock, over length scales of 1–35 km. These results reconcile the apparently conflicting observations of short-length-scale heterogeneity observed in boreholes, which sample primarily the basins, with the relative homogeneity of stress inferred from focal mechanisms, which sample primarily the basement, and imply distinct regimes for the appropriate use of each type of stress indicator

    Stress Orientations Obtained from Earthquake Focal Mechanisms: What Are Appropriate Uncertainty Estimates?

    Get PDF
    Crustal stress orientations provide important information about the mechanics of regional deformation. Numerous methods exist for inverting earthquake focal mechanisms for stress orientation, and the more widely used methods usually obtain similar results for similar data sets. However, error estimates are highly variable, complicating the interpretation of results. The southern California stress field, for example, contains much statistically significant spatial and temporal variability according to the error estimates of one method (Michael, 1984, 1987b), but very little according to those of another (Gephart and Forsyth, 1984). To resolve whether the southern California stress field is generally homogeneous or heterogeneous, we must determine which of the error estimates best reflects the true inversion uncertainty. To do this, we tested both methods on a suite of synthetic focal mechanism data sets containing random errors. The method of Gephart and Forsyth (1984) usually provides more accurate estimates of stress orientation, especially for high-quality data sets, but its confidence regions are in most cases too large. The method of Michael (1984, 1987b) is more accurate for very noisy data sets and provides a more appropriate estimate of uncertainty, implying that the stress field in southern California is probably heterogeneous

    Static stress drop in the 1994 Northridge, California, aftershock sequence

    Get PDF
    We use time-domain pulse widths to estimate static stress drops for 279 M_L 2.5 to 4.0 aftershocks of the 17 January 1994, M_W 6.7 Northridge, California, earthquake. The stress drops obtained range from 0.02 to 40 bars, with a log average of 0.75 bar. Error bars computed for our estimates are typically a factor of 5, indicating that the three order of magnitude scatter in stress drops is not solely a result of measurement errors and that there is a significant amount of heterogeneity in the static stress drops of the aftershocks. Stress drops might be expected to increase with depth, since a fault can maintain a higher shear load at higher confining pressures. We observe an increase in log average stress drop at about 15 km depth, which is statistically significant at the 80% confidence level. The increase is due primarily to a lack of lower stress-drop events below this depth and may be controlled by material properties since the Northridge aftershocks are observed to intersect an anomalously high-velocity body at around this depth (Hauksson and Haase, 1997). An apparent increase in stress drop with magnitude is also observed over the entire magnitude range of the study, although whether this trend is real or an artifact of attenuation of high frequencies in the upper crust is unresolved

    Crustal stress field in southern California and its implications for fault mechanics

    Get PDF
    We present a new, high spatial resolution image of stress orientation in southern California based on the inversion of earthquake focal mechanisms. We use this image to study the mechanics of faulting in the plate boundary region. The stress field contains significant spatial heterogeneity, which in some cases appears to be a result of the complexity of faulting and in other cases appears to be a cause. Temporal changes in the stress field are also observed, primarily related to major earthquakes. The observed 15° (±10°) rotation of the stress axes due to the 1992 M7.3 Landers mainshock implies that the deviatoric stress magnitude in the crust is low, of the order of 10 MPa. This suggests that active faults in southern California are weak. The maximum principal stress axis near the San Andreas Fault is often at ∌50° to the fault strike, indicating that the shear stress on the fault is comparable to the deviatoric stress. The San Andreas in southern California may therefore be a weak fault in a low-strength crust

    The static stress change triggering model: Constraints from two southern California aftershock sequences

    Get PDF
    Static stress change has been proposed as a mechanism of earthquake triggering. We quantitatively evaluate this model for the apparent triggering of aftershocks by the 1992 M_W 7.3 Landers and 1994 M_W 6.7 Northridge earthquakes. Specifically, we test whether the fraction of aftershocks consistent with static stress change triggering is greater than the fraction of random events which would appear consistent by chance. Although static stress changes appear useful in explaining the triggering of some aftershocks, the model's capability to explain aftershock occurrence varies significantly between sequences. The model works well for Landers aftershocks. Approximately 85% of events between 5 and 75 km distance from the mainshock fault plane are consistent with static stress change triggering, compared to ∌50% of random events. The minimum distance is probably controlled by limitations of the modeling, while the maximum distance may be because static stress changes of <0.01 MPa trigger too few events to be detected. The static stress change triggering model, however, can not explain the first month of the Northridge aftershock sequence significantly better than it explains a set of random events. The difference between the Landers and Northridge sequences may result from differences in fault strength, with static stress changes being a more significant fraction of the failure stress of weak Landers-area faults. Tectonic regime, regional stress levels, and fault strength may need to be incorporated into the static stress change triggering model before it can be used reliably for seismic hazard assessment

    The tectonic history of the Tasman Sea: A puzzle with 13 pieces

    Get PDF
    We present a new model for the tectonic evolution of the Tasman Sea based on dense satellite altimetry data and a new shipboard data set. We utilized a combined set of revised magnetic anomaly and fracture zone interpretations to calculate relative motions and their uncertainties between the Australian and the Lord Howe Rise plates from 73.6 Ma to 52 Ma when spreading ceased. From chron 31 (67.7 Ma) to chron 29 (64.0 Ma) the model implies, transpression between the Chesterfield and the Marion plateaus, followed by strike-slip motion. This transpression may have been responsible for the formation of the Capricorn Basin south of the Marion Plateau. Another major tectonic event took place at chron 27 (61.2 Ma), when a counterclockwise change in spreading direction occurred, contemporaneous with a similar event in the southwest Pacific Ocean. The early opening of the Tasman Sea cannot be modeled by a simple two-plate system because (1) rifting in this basin propagated from south to north in several stages and (2) several rifts failed. We identified 13 continental blocks which acted as microplates between 90 Ma and 64 Ma. Our model is constrained by tectonic lineaments visible in the gravity anomaly grid and interpreted as strike-slip faults, by magnetic anomaly, bathymetry and seismic data, and in case of the South Tasman Rise, by the age and affinity of dredged rocks. By combining all this information we derived finite rotations that describe the dispersal of these tectonic elements during the early opening of the Tasman Sea

    A California Statewide Three-Dimensional Seismic Velocity Model from Both Absolute and Differential Times

    Get PDF
    We obtain a seismic velocity model of the California crust and uppermost mantle using a regional-scale double-difference tomography algorithm. We begin by using absolute arrival-time picks to solve for a coarse three-dimensional (3D) P velocity (V_P) model with a uniform 30 km horizontal node spacing, which we then use as the starting model for a finer-scale inversion using double-difference tomography applied to absolute and differential pick times. For computational reasons, we split the state into 5 subregions with a grid spacing of 10 to 20 km and assemble our final statewide V_P model by stitching together these local models. We also solve for a statewide S-wave model using S picks from both the Southern California Seismic Network and USArray, assuming a starting model based on the VP results and a V_P/V_S ratio of 1.732. Our new model has improved areal coverage compared with previous models, extending 570 km in the SW–NE direction and 1320 km in the NW–SE direction. It also extends to greater depth due to the inclusion of substantial data at large epicentral distances. Our V_P model generally agrees with previous separate regional models for northern and southern California, but we also observe some new features, such as high-velocity anomalies at shallow depths in the Klamath Mountains and Mount Shasta area, somewhat slow velocities in the northern Coast Ranges, and slow anomalies beneath the Sierra Nevada at midcrustal and greater depths. This model can be applied to a variety of regional-scale studies in California, such as developing a unified statewide earthquake location catalog and performing regional waveform modeling

    Young solid Earth researchers of the world unite!

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95272/1/eost14667.pd

    Preliminary Report on the 22 December 2003, M 6.5 San Simeon, California Earthquake

    Get PDF
    The Mw 6.5 San Simeon earthquake struck the central California coast on 22 December 2003 at 19:15:56 UTC (11:15:56 am local time.) The epicenter was located 11 km northeast of the town of San Simeon, and 39 km west-northwest of Paso Robles (Figure 1), as reported by the California Integrated Seismic Network (CISN, the California region of the Advanced National Seismic System [ANSS]). The mainshock nucleated at 35.702°N, 121.108°W and a depth of 7.1 km, and the rupture propagated unilaterally to the southeast. The strong directivity of the rupture resulted in a concentration of damage and aftershock..
    corecore