316 research outputs found

    Children's play space and safety management: rethinking the role of play equipment standards

    Get PDF
    The provision of stimulating and engaging play space for children and young people is increasingly recognized as an important societal goal, not the least because it provides the young with opportunities to develop and gain experience in experimenting with risk. Research in several disciplines now suggests that achievement of this goal has however been impeded in recent decades, and reasons commonly cited have included fear of injury and avoidance of litigation. International standards on play equipment have also been promulgated and justified in terms of securing young people’s “safety,” most usually narrowly defined as injury reduction. There appears to be a widespread presumption that measures aimed at injury prevention are necessarily beneficial overall for young people’s welfare. In this article, we subject European standards for play equipment and surfacing to scrutiny. In particular, we examine underlying motives, consistency of purpose, use of evidence, philosophical leanings, scope, practicalities of application, systems of management, and legal ramifications. From this, we identify a number of fundamental issues that suggest that as a consequence of compartmentalized thinking and misunderstandings, these standards have invaded areas of decision making beyond their legitimate territory. The consequence of this is that play provision is skewed away from what are properly play provision objectives. In such circumstances, local decision makers are often disempowered, and their ability to provide optimal play spaces thereby circumscribed

    THE INFLUENCE OF PARTICLE CONCENTRATION ON THE FLUID PHASE OF AN AXISYMMETRIC MULTIPHASE IMPINGING JET

    Get PDF
    Particle image velocimetry (PIV) is used to determine the effect of particle concentration on the fluid phase of a solid-liquid multiphase impinging jet. Two spherical particles were considered, polystyrene of 1050 kg m-3 and glass of 2450 kg m-3, both with a diameter of 225 μm. The fluid axial and radial velocities are measured with particle volume fractions (φ) equal to 0, 1x10-4, 2x10-4 and 4x10-4.For both particle types as the concentration is increased, the level of axial velocity retained immediately prior to impingement (at 6 diameters from the pipe exit) also increases. At low particle concentrations the particles have little effect on the flow turbulence, however, at higher particle concentrations the particle effect becomes more significant, with a near doubling of the peak axial RMS velocity one diameter from the jet outlet in one case. The introduction of polystyrene particles has the effect of dampening radial and axial RMS velocities, except for at the highest concentration immediately after the jet outlet where the axial turbulence is enhanced by the particles

    Interfacial Particle Dynamics: One and Two Step Yielding in Colloidal Glass.

    Get PDF
    The yielding behavior of silica nanoparticles partitioned at an air-aqueous interface is reported. Linear viscoelasticity of the particle-laden interface can be retrieved via a time-dependent and electrolyte-dependent superposition, and the applicability of the "soft glassy rheology" (SGR) model is confirmed. With increasing electrolyte concentration (φ(elect)) in the aqueous subphase, a nonergodic state is achieved with particle dynamics arrested first from attraction induced bonding bridges and then from the cage effect of particle jamming, manifesting in a two-step yielding process under large amplitude oscillation strain (LAOS). The Lissajous curves disclose a shear-induced in-cage particle redisplacement within oscillation cycles between the two yielding steps, exhibiting a "strain softening" transitioning to "strain stiffening" as the interparticle attraction increases. By varying φ(elect) and the particle spreading concentration, φ(SiO2), a variety of phase transitions from fluid- to gel- and glass-like can be unified to construct a state diagram mapping the yielding behaviors from one-step to two-step before finally exhibiting one-step yielding at high φ(elect) and φ(SiO2)

    Avoiding a dystopian future for children's play

    Get PDF
    Describes the conflict between children's freedom to play and the quest for safety and makes recommendations for the future

    Safety Profile of Stromal Hydration of Clear Corneal Incisions with Cefuroxime in the Mouse Model

    Get PDF
    PURPOSE: The use of sutureless clear corneal incisions (CCIs) for phacoemulsification is an established surgical technique, but the dynamic morphology of the wound and poor construction can lead to an increased risk of postoperative endophthalmitis. Stromal hydration with balanced salt solution (BSS) can improve the self-sealing status. Intracameral cefuroxime has reduced endophthalmitis rates. This study investigates the safety profile of stromal hydration with cefuroxime, as sequestering antibiotic at the wound may potentially provide added protection against infection. METHODS: MF-1 mice underwent bilateral CCI, followed by stromal hydration with 5 μL of 10 mg/mL cefuroxime, cefuroxime-texas red conjugate (for detection using confocal microscopy), or BSS. Corneas were harvested from 1 h to 12 weeks postoperatively; gross morphology, histology, and apoptotic cell death levels were investigated to determine the safety profile. Bactericidal activity of cefuroxime was assayed using homogenized whole cornea following stromal hydration at 1 h, 24 h, and day 7 against gram-negative Escherichia coli. RESULTS: Cefuroxime stromal hydration did not alter corneal morphology, with no evidence of corneal scarring or vascularization. Corneal histology and levels of apoptosis were minimal and comparable to the BSS groups up to 12 weeks. Confocal microscopy detected cefuroxime-texas red up to 1 week surrounding the corneal wound. Whole corneal tissue homogenates displayed bactericidal activity up to 24 h postoperatively. CONCLUSIONS: Stromal hydration of CCI with cefuroxime is safe in mouse corneas. A reservoir of antibiotic at the wound can potentially act as a barrier of defense against infection following cataract and associated ocular surgery

    The effect of cationic surfactants on improving natural clinoptilolite for the flotation of cesium

    Get PDF
    Flotation using cationic surfactants has been investigated as a rapid separation technique to dewater clinoptilolite ion exchange resins, for the decontamination of radioactive cesium ions (Cs+) from nuclear waste effluent. Initial kinetic and equilibrium adsorption studies of cesium, suggested the large surface area to volume ratio of the fine zeolite contributed to fast adsorption kinetics and high capacities (qc = 158.3 mg/g). Adsorption of ethylhexadecyldimethylammonium bromide (EHDa-Br) and cetylpyridinium chloride (CPC) surfactant collectors onto both clean and 5 ppm Cs+ contaminated clinoptilolite was then measured, where distribution coefficients (Kd) as high as 10,000 mL/g were evident with moderate concentrations CPC. Measurements of particle sizes confirmed that adsorption of surfactant monolayers did not lead to significant aggregation of the clinoptilolite, while 4, highlighting the great viability of flotation to separate and concentrate the contaminated powder in the froth phase

    The effect of pre-activation and milling on improving natural clinoptilolite for ion exchange of cesium and strontium

    Get PDF
    Natural clinoptilolite, of relatively low-grade, was investigated for its capability to remove cesium and strontium ions from water and simulated seawater. To improve its capacity, the material was pre-activated with concentrated NaCl and HCl solutions. Additionally, it was milled to a number of < 300 μm size fractions, to expose exchange sites. Electron microscopy was used to characterise the naturally occurring impurities, where regions of high iron and potassium content was shown to correlate to lower levels of cesium adsorption. Adsorption kinetics for natural and activated resins with 5, 300 and 1500 ppm salt solutions were fitted with the Pseudo-Second Order (PSO) rate model. Activation led to clear increases in initial adsorption rate for both Cs+ and Sr2+, but only enhanced the overall rate constant for Cs+, due to the weaker interaction of the Sr2+. Equilibrium isotherms were compared with Langmuir and Freundlich monolayer models, where the adsorption capacity (Qc) for Cs+ was 67 mg/g which increased by over 100% with NaCl activation to 140 mg/g. Values for Sr2+ were significantly lower at 35 mg/g, with a considerably smaller enhancement with activation to 52 mg/g. Milling of the natural clinoptilolite was found to increase Cs+ uptake to similar levels as activation, in a linear correlation with specific surface area; although, improvements for Sr2+ were again lower, due to its weaker interaction with surface sites. In simulated seawater solutions, all materials gave considerably reduced performance due to K+ ion competition, with Sr2+ uptake decreased more extensively compared to Cs+. Overall, this work highlights that pre-activation and milling of clinoptilolite can be used to significantly enhance the grade of the ore for nuclear effluent treatment in low-salinity conditions

    Substrate Wettability Influences Internal Jet Formation and Mixing during Droplet Coalescence

    Get PDF
    The internal dynamics during the axisymmetric coalescence of an initially static free droplet and a sessile droplet of the same fluid are studied using both laboratory experiments and numerical simulations. A high-speed camera captured internal flows from the side, visualized by adding a dye to the free droplet. The numerical simulations employ the volume of fluid method, with the Kistler dynamic contact angle model to capture substrate wettability, quantitatively validated against the image-processed experiments. It is shown that an internal jet can be formed when capillary waves reflected from the contact line create a small tip with high curvature on top of the coalesced droplet that propels fluid toward the substrate. Jet formation is found to depend on the substrate wettability, which influences capillary wave reflection; the importance of the advancing contact angle subordinated to that of the receding contact angle. It is systematically shown via regime maps that jet formation is enhanced by increasing the receding contact angle and by decreasing the droplet viscosity. Jets are seen at volume ratios very different from those accepted for free droplets, showing that a substrate with appropriate wettability can improve the efficiency of fluid mixing

    Molecular Interactions between a Biodegradable Demulsifier and Asphaltenes in an Organic Solvent

    Get PDF
    A surface forces apparatus (SFA) was used to measure the intermolecular forces between a biodegradable demulsifier (ethyl cellulose, EC) and asphaltenes immobilized individually on molecularly smooth mica surfaces in an organic solvent. A steric repulsion on approach between the immobilized EC layers and asphaltenes was measured despite strong adhesion (Fad/R ≈ −2 mN/m; Wad = 0.42 mJ/m2) during retraction. The measured adhesion was attributed to the interpenetration and tangling of aliphatic branches of swollen asphaltenes and solvated chains of EC macromolecules. Competitive adsorption of EC on/in immobilized asphaltene layers was confirmed by combining SFA force measurements and atomic force microscopy (AFM) imaging. Following the injection of EC-in-toluene solution, an immediate (<5 min) increase in the confined layer thickness of the immobilized asphaltene layers was measured. Irreversibly adsorbed asphaltenes were displaced by EC macromolecules through binding with unoccupied surface sites on mica, followed by the spreading of EC across the mica substrate due to increased surface activity governed by the higher number of hydroxyl groups per EC molecule. AFM imaging confirmed that the increase in confined layer thickness resulted from the formation of larger asphaltene aggregates/clusters protruding from the mica substrate. Molecular level topographical images showed that the asphaltenes were not resolvated in the organic phase but self-associated as the EC macromolecules spread across the hydrophilic mica substrate. The results from this study provide not only fundamental insights into the basic interaction mechanisms of asphaltenes with EC macromolecules as a demulsifier in organic media but also directions toward enhancing demulsification of water-in-oil emulsions

    Yield stress dependency on the evolution of bubble populations generated in consolidated soft sediments

    Get PDF
    Retention of hydrogen bubbles within consolidated soft sediments represents an important safety consideration for the management of legacy nuclear wastes due to the potential for acute gas release. Gas retention sufficiently reduced the bulk density of intermediate yield stress (< 800 Pa) sediments for the bed to become buoyant with respect to an aqueous supernatant, potentially inducing Rayleigh-Taylor instabilities. X-ray computed tomography revealed that beds of 7-234 Pa yield stress retained very similar, steady state size distributions of mature bubbles, limited to 9 mm equivalent spherical diameter, for long residence times. This implied a dominant gas release mechanism dictated by the pore to millimeter scale bubble population, not previously identified in such weak sediments and unrelated to the bubbles' buoyant force. At 1112 Pa yield stress, large bubbles of up to 20 mm diameter were observed to grow through induction of lateral cracks, facilitating gas transport to the bed periphery, thereby limiting the maximum void fraction, while non-homogeneous gas generation promoted the formation of low density regions rich with micro-bubbles which similarly provide pathways for gas release
    corecore