412 research outputs found
Understanding deterministic diffusion by correlated random walks
Low-dimensional periodic arrays of scatterers with a moving point particle
are ideal models for studying deterministic diffusion. For such systems the
diffusion coefficient is typically an irregular function under variation of a
control parameter. Here we propose a systematic scheme of how to approximate
deterministic diffusion coefficients of this kind in terms of correlated random
walks. We apply this approach to two simple examples which are a
one-dimensional map on the line and the periodic Lorentz gas. Starting from
suitable Green-Kubo formulas we evaluate hierarchies of approximations for
their parameter-dependent diffusion coefficients. These approximations converge
exactly yielding a straightforward interpretation of the structure of these
irregular diffusion coeficients in terms of dynamical correlations.Comment: 13 pages (revtex) with 5 figures (postscript
The relationship between chaotic behavior and tunneling effect in quantum transport devices(1)Current topics of quantum chaos in nanosciences, Chaos and Nonlinear Dynamics in Quantum-Mechanical and Macroscopic Systems)
この論文は国立情報学研究所の電子図書館事業により電子化されました。狭い金属ゲート(QPC)を両端に有する開放型量子ドットについて、零磁場近傍の磁気抵抗のピーク形状が、ゲート電圧を変化させることによってローレンツ型とカスプ型が交互に現れる現象が観測された。このローレンツ型とカスプ型が交互に現れる要因としては、QPCによるトンネリング効果と量子ドットによる弱局在の両方が関係しているものではないかと推測され、考察を行った。We have studied transport properties in the low-temperature magnetoresistance through the ballistic narrow path restricted by short width metallic gates, which cause a quantum point contact(QPC) which have a saddle point potential, on the 2 dimensional electron gas(2DEG) system. An alternate and systematic variation between a Lorentzian line fitting and a cusplike line fitting in the zero-field peaks has been observed, as sweeping the gate voltage. It indicates a possibility of existence of chaotic and regular paths on the short gated ballistic/tunneling transport. We will discuss on the quantum chaos behavior on the systematic variation between the Lorentzian and the cusp-like peakshape based on the disordered path system under the short gate, and suggest a relation with level repulsion of energy spectrum
Preparation of amino-substituted indenes and 1,4-dihydronaphthalenes using a one-pot multireaction approach: total synthesis of oxybenzo[c]phenanthridine alkaloids
Allylic trichloroacetimidates bearing a 2-vinyl or 2-allylaryl group have been designed as substrates for a one-pot, two-step multi-bond-forming process leading to the general preparation of aminoindenes and amino-substituted 1,4-dihydronaphthalenes. The synthetic utility of the privileged structures formed from this one-pot process was demonstrated with the total synthesis of four oxybenzo[c]phenanthridine alkaloids, oxychelerythrine, oxysanguinarine, oxynitidine, and oxyavicine. An intramolecular biaryl Heck coupling reaction, catalyzed using the Hermann–Beller palladacycle was used to effect the key step during the synthesis of the natural products
Hyperfast pulsars as the remnants of massive stars ejected from young star clusters
Recent proper motion and parallax measurements for the pulsar PSR B1508+55
indicate a transverse velocity of ~1100 km/s, which exceeds earlier
measurements for any neutron star. The spin-down characteristics of PSR
B1508+55 are typical for a non-recycled pulsar, which implies that the velocity
of the pulsar cannot have originated from the second supernova disruption of a
massive binary system. The high velocity of PSR B1508+55 can be accounted for
by assuming that it received a kick at birth or that the neutron star was
accelerated after its formation in the supernova explosion. We propose an
explanation for the origin of hyperfast neutron stars based on the hypothesis
that they could be the remnants of a symmetric supernova explosion of a
high-velocity massive star which attained its peculiar velocity (similar to
that of the pulsar) in the course of a strong dynamical three- or four-body
encounter in the core of dense young star cluster. To check this hypothesis we
investigated three dynamical processes involving close encounters between: (i)
two hard massive binaries, (ii) a hard binary and an intermediate-mass black
hole, and (iii) a single star and a hard binary intermediate-mass black hole.
We find that main-sequence O-type stars cannot be ejected from young massive
star clusters with peculiar velocities high enough to explain the origin of
hyperfast neutron stars, but lower mass main-sequence stars or the stripped
helium cores of massive stars could be accelerated to hypervelocities. Our
explanation for the origin of hyperfast pulsars requires a very dense stellar
environment of the order of 10^6 -10^7 stars pc^{-3}. Although such high
densities may exist during the core collapse of young massive star clusters, we
caution that they have never been observed.Comment: 11 pages, 6 figures, 1 table, accepted to MNRA
Uniform approximation for diffractive contributions to the trace formula in billiard systems
We derive contributions to the trace formula for the spectral density
accounting for the role of diffractive orbits in two-dimensional billiard
systems with corners. This is achieved by using the exact Sommerfeld solution
for the Green function of a wedge. We obtain a uniformly valid formula which
interpolates between formerly separate approaches (the geometrical theory of
diffraction and Gutzwiller's trace formula). It yields excellent numerical
agreement with exact quantum results, also in cases where other methods fail.Comment: LaTeX, 41 pages including 12 PostScript figures, submitted to Phys.
Rev.
- …