14 research outputs found

    A novel tuning approach for offset-free MPC

    Get PDF

    Adaptive calibration for reduced fuel consumption and emissions

    Full text link
    This paper presents a model-based approach for continuously adapting an engine calibration to the traffic and changing pollutant emission limits. The proposed strategy does not need additional experimental tests beyond those required by the traditional calibration approach. The method utilises information currently available in the engine control unit to adapt the engine control to the particular driving patterns of a given driver. Additional information about the emissions limits should be provided by an external structure if an adaptation to the pollutant immission is required. The proposed strategy has been implemented in a light-duty diesel engine, and showed a good potential to keep NOx emissions around a defined limit.Guardiola, C.; Pla Moreno, B.; Bares-Moreno, P.; Waschl, H. (2016). Adaptive calibration for reduced fuel consumption and emissions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 230(14):2002-2014. doi:10.1177/0954407016636977S200220142301

    Position Regulation of an EGR Valve Using Reset Control With Adaptive Feedforward

    No full text
    International audienceWe propose a hybrid control system performing set-point regulation of an exhaust gas recirculation valve of a Diesel engine. The control technique is based on a first-order reset element (FORE) embedded with an adaptive feedforward action whose aim is to provide asymptotic rejection of disturbances acting at the plant input. The feedforward action is adapted by suitable resetting laws occurring whenever the FORE is reset to zero. We first provide a formal analysis of the effectiveness of the adaptive reset system to guarantee asymptotic set-point regulation, and then, we illustrate how the adaptive feedforward can be parameterized for improved transient performance. We experimentally illustrate the proposed solution on a Diesel engine testbench, which reveals substantial position accuracy improvement during a standard driving cycle, as compared with the production standard solution

    Topology Optimization of Hybrid Power Trains

    No full text
    Topology optimization methods for continuum systems (structural topology, shape, material) are well-established. However, these methods do not apply to non-continuum or dynamic systems with discrete components with unique characteristics as with hybrid vehicles. This chapter examines the power train topology and control design optimization problem at vehicle system level. The design space related to power train and control system optimization level is rapidly increasing with new developments in power train, auxiliary technologies, system architectures (topologies) and cyber-physical systems. The multi-objective, mixed or hybrid (continuous/discrete time) character on both coupled levels of the problem requires relative long computation time. Therefore, it requires a bi-level (nested) or simultaneous system design approach. Since, sequential or iterative design procedures fail to prove system-level optimality. In this chapter, some illustrative examples are discussed related to nested control and design optimization problems related to continuous/stepped-gear transmission shifting, power split control and/or in combination with topology optimization
    corecore