95 research outputs found

    Length sensing and control for Einstein Telescope Low Frequency

    Get PDF
    In this paper we describe a feasible length sensing and control scheme for the low frequency interferometers of the Einstein Telescope (ET-LF) along with the techniques used to optimise several optical parameters, including the length of the recycling cavities and the modulation frequencies, using two numerical interferometer simulation packages: Optickle and Finesse. The investigations have suggested the use of certain combinations of sidebands to obtain independent information about the different degrees of freedom

    Birefringence Measurements on Crystalline Silicon

    Get PDF
    Crystalline silicon has been proposed as a new test mass material in third generation gravitational wave detectors such as the Einstein Telescope (ET). Birefringence can reduce the interferometric contrast and can produce dynamical disturbances in interferometers. In this work we use the method of polarisation-dependent resonance frequency analysis of Fabry-Perot-cavities containing silicon as a birefringent medium. Our measurements show a birefringence of silicon along the (111) axis of the order of Δ n≈10−7\Delta\, n \approx 10^{-7} at a laser wavelength of 1550nm and room temperature. A model is presented that explains the results of different settings of our measurements as a superposition of elastic strains caused by external stresses in the sample and plastic strains possibly generated during the production process. An application of our theory on the proposed ET test mass geometry suggests no critical effect on birefringence due to elastic strains.Comment: 19 pages, 6 figures, 2 table

    Analysis of a four-mirror cavity enhanced Michelson interferometer

    Full text link
    We investigate the shot noise limited sensitivity of a four-mirror cavity enhanced Michelson interferometer. The intention of this interferometer topology is the reduction of thermal lensing and the impact of the interferometers contrast although transmissive optics are used with high circulating powers. The analytical expressions describing the light fields and the frequency response are derived. Although the parameter space has 11 dimensions, a detailed analysis of the resonance feature gives boundary conditions allowing systematic parameter studies

    Bilinear noise subtraction at the GEO 600 observatory

    No full text
    We develop a scheme to subtract off bilinear noise from the gravitational wave strain data and demonstrate it at the GEO 600 observatory. Modulations caused by test mass misalignments on longitudinal control signals are observed to have a broadband effect on the mid-frequency detector sensitivity ranging from 50 Hz to 500 Hz. We estimate this bilinear coupling by making use of narrow-band signal injections that are already in place for noise projection purposes. A coherent bilinear signal is constructed by a two-stage system identification process where the involved couplings are approximated in terms of stable rational functions. The time-domain filtering efficiency is observed to depend upon the system identification process especially when the involved transfer functions cover a large dynamic range and have multiple resonant features. We improve upon the existing filter design techniques by employing a Bayesian adaptive directed search strategy that optimizes across the several key parameters that affect the accuracy of the estimated model. The resulting post-offline subtraction leads to a suppression of modulation side-bands around the calibration lines along with a broadband reduction of the mid-frequency noise floor. The filter coefficients are updated periodically to account for any non-stationarities that can arise within the coupling. The observed increase in the astrophysical range and a reduction in the occurrence of non-astrophysical transients suggest that the above method is a viable data cleaning technique for current and future gravitational wave observatories

    High power and ultra-low-noise photodetector for squeezed-light enhanced gravitational wave detectors

    Get PDF
    Current laser-interferometric gravitational wave detectors employ a self-homodyne readout scheme where a comparatively large light power (5–50 mW) is detected per photosensitive element. For best sensitivity to gravitational waves, signal levels as low as the quantum shot noise have to be measured as accurately as possible. The electronic noise of the detection circuit can produce a relevant limit to this accuracy, in particular when squeezed states of light are used to reduce the quantum noise. We present a new electronic circuit design reducing the electronic noise of the photodetection circuit in the audio band. In the application of this circuit at the gravitational-wave detector GEO 600 the shot-noise to electronic noise ratio was permanently improved by a factor of more than 4 above 1 kHz, while the dynamic range was improved by a factor of 7. The noise equivalent photocurrent of the implemented photodetector and circuit is about 5 ”A/ √\ud Hz above 1 kHz with a maximum detectable photocurrent of 20 mA. With the new circuit, the observed squeezing level in GEO 600 increased by 0.2 dB. The new circuit also creates headroom for higher laser power and more squeezing to be observed in the future in GEO 600 and is applicable to other optics experiments

    First demonstration of 6 dB quantum noise reduction in a kilometer scale gravitational wave observatory

    Get PDF
    Photon shot noise, arising from the quantum-mechanical nature of the light, currently limits the sensitivity of all the gravitational wave observatories at frequencies above one kilohertz. We report a successful application of squeezed vacuum states of light at the GEO\,600 observatory and demonstrate for the first time a reduction of quantum noise up to 6.03±0.026.03 \pm 0.02 dB in a kilometer-scale interferometer. This is equivalent at high frequencies to increasing the laser power circulating in the interferometer by a factor of four. Achieving this milestone, a key goal for the upgrades of the advanced detectors, required a better understanding of the noise sources and losses, and implementation of robust control schemes to mitigate their contributions. In particular, we address the optical losses from beam propagation, phase noise from the squeezing ellipse, and backscattered light from the squeezed light source. The expertise gained from this work carried out at GEO 600 provides insight towards the implementation of 10 dB of squeezing envisioned for third-generation gravitational wave detectors

    The upgrade of GEO 600

    Get PDF
    The German/ British gravitational wave detector GEO 600 is in the process of being upgraded. The upgrading process of GEO 600, called GEO-HF, will concentrate on the improvement of the sensitivity for high frequency signals and the demonstration of advanced technologies. In the years 2009 to 2011 the detector will undergo a series of upgrade steps, which are described in this paper.Science and Technology Facilities Council (STFC)BMBFMax Planck Society (MPG)State of Lower SaxonyDFG/SFB/Transregio

    Constraints on cosmic strings from the ligo-virgo gravitational-wave detectors

    Get PDF
    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension GÎŒ below 10−8 in some regions of the cosmic string parameter space. © 2014 The American Physical Societ

    Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network

    Get PDF
    Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance, that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a “blind injection” where the signal was not initially revealed to the collaboration. We exemplify the ability to extract information about the source physics on signals that cover the neutron-star and black-hole binary parameter space over the component mass range 1 M⊙–25 M⊙ and the full range of spin parameters. The cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the operation of advanced detectors. © 2013 The American Physical Societ
    • 

    corecore