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Abstract
Crystalline silicon has been proposed as a new test mass material in third
generation gravitational wave detectors such as the Einstein telescope (ET).
Birefringence can reduce the interferometric contrast and can produce dyna-
mical disturbances in interferometers. In this work we use the method of
polarization-dependent resonance-frequency analysis of Fabry–Perot-cavities
containing silicon as a birefringent medium. Our measurements show a bire-
fringence of silicon along the (111) axis of the order ofD » -n 10 7 at a laser
wavelength of 1550 nm and room temperature. A model is presented that
explains the results of different settings of our measurements as a super-
position of elastic strains caused by external stresses in the sample and plastic
strains possibly generated during the production process. An application of our
theory on the proposed ET test mass geometry suggests no critical effect on
birefringence due to elastic strains.
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1. Introduction

The initial as well as the advanced version of gravitational wave (GW) detectors, which are
currently being installed, such as aLIGO and advanced Virgo, use suspended fused silica
optics as test masses [1, 2]. These observatories are set up as dual-recycled cavity-enhanced
Michelson-type laser interferometers with a kilometer-scale baseline and are operated at room
temperature. The KAGRA observatory [3] and parts of the proposed Einstein telescope (ET)
[4] will be operated at cryogenic temperatures and will use new test mass materials in order to
reduce thermal noise. In the case of the low frequency interferometer of the Einstein telescope
(ET-LF) [4] crystalline silicon has been suggested as test mass material. The test masses of
GW detectors need to have low mechanical loss [5] to limit thermal noise and low optical loss
at the laser wavelength to avoid the formation of excessive thermal lenses and an overall
heating of test masses. The optical absorption of silicon at the designated ET wavelength of
1550 nm is currently being investigated [6–9]. The test masses also need to have a low
birefringence to allow a high interferometer contrast and high power- and signal-recycling
gains [10–13].

In this paper we investigate birefringence and its effects in silicon test masses at room
temperature. The effect of birefringence and an upper birefringence limit for GW detectors is
discussed in the next section. We use a Fabry–Perot-cavity to detect the birefringence of
silicon which allows the sensing of the integrated birefringence along the axis of the cavity
mode. An overview of the measurement method is given in section 2. We present experi-
mental results for the birefringence in silicon samples and a model reproducing the observed
behavior. Based on our results we estimate the expected birefringence in the test-masses
of ET.

1.1. Effect of birefringence in a Michelson-type interferometer

In GW detectors, linearly polarized laser light is coupled into a resonant arm cavity formed by
the test masses of a GW detector (designated TM1 and TM2, respectively), see figure 1. Due
to the orthogonal axes of the indices of refraction (no and ne, respectively) which are generally
not precisely aligned with the polarization of the incident light, the light field is split into two
components which sense different optical path lengths inside the test mass. The two ortho-
gonal fields transmitted through the test mass will then be out of phase, resulting in elliptically
polarized light inside the cavity (figure 1). In this work, birefringence-free coatings are
assumed. This assumption will be justified in detail in section 4.3 (see also [14–16]). In this
case both polarizations experience the same phase shift under reflection at the cavity mirrors,
hence no further change in polarization inside the cavity is added. When leaving the cavity
through the incoupling mirror TM1, the birefringence will (in general) further increase the
ellipticity (figure 1). When superimposed on the beam splitter of a GW detector, the two light
fields emerging from the two arms (generally having experienced different levels of bire-
fringence) show different polarizations and lead to a reduced contrast of the interferometer.
This is of concern as GW detectors are operated close to their dark fringe [4, 17, 18], which is
the typical procedure to reduce the light power on the photodetector and to enable power
recycling [17].

Furthermore, each polarization dependent optical component implemented in a GW
detector, such as optical isolators or polarization-dependent beam splitters, will give rise to
additional optical losses once the incident polarization is modified. These losses would reduce
the efficiency of advanced techniques such as the use of squeezed light [19, 20]. If the
orientation of the birefringence of the test mass materials does not depend on the location of
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beam transmission through the test masses, an easy solution would be to align the beam
polarization and the test masses in a way such that the incident polarization is aligned with
one of the orthogonal components of the index of refraction. In this case the effects of
birefringence could be suppressed. In practice, however, such an alignment may be not
perfect, and furthermore, the birefringence orientation may be a function of the position inside
the mirror substrate.

In addition, dynamic effects caused by birefringence, have to be considered; for example
an oscillatory rotation of the test mass around the beam axis. This motion is called roll mode
of the optics and is observed in GW detectors such as advanced LIGO. If in this case no
birefringence is present, there will be no modulation of the light field. But, once there are two
different indices of refraction, there will be a coupling to the other polarization generating an
oscillating intensity at the detection port of the interferometer, which cannot be distinguished
from a GW signal.

The birefringence of fused silica test masses has been estimated to be between
 ´ D ´- -n2.5 10 5.0 108 8 [13]. These values were sufficiently low for the initial

generation of GW detectors. In [13], Winkler et al gave a detailed description on how
birefringence can limit a power recycled GW detector with arm cavities. Let DP

P0
be the power

losses due to depolarization in a GW detector, then in order to not limit the power build-up in
the interferometer

D
<

P

P G

1

0

has to be fulfilled, where G is the power-recycling gain of the interferometer.
Making further use of the equations given in [13], we can derive an upper limit for the

acceptable birefringence assuming that the axes of the indices of refraction (designated ne and
no in figure 1) of silicon are oriented at an angle of π/4 to the linear polarization of the laser
light used in the GW detector. An angle of π/4 is the worst case since it maximizes the
resulting ellipticity. According to [13]

Figure 1. Effect of birefringence on light coupled to and reflected off an arm cavity
formed by the test mass mirrors TM1 and TM2. The incident light field (red arrow) is
linearly polarized along the y-axis. The axes of the ordinary and extraordinary
polarizations (no and ne, respectively) do generally not align with the polarization of the
incident light field. While transmitting through the incoupling test mass (TM1) the light
field experiences birefringence which causes the intra-cavity light field to be elliptically
polarized. The red arrow marking the polarization now circles on the dashed ellipse.
When leaving the cavity the present birefringence will not reverse the effects of the first
transmission which means the back-traveling light field is still elliptically polarized.
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with L being the substrate length and λ being the laser wavelength. The ET-LF test masses are
planned to be cylindrical silicon substrates having a thickness of about 50 cm and a diameter
of at least 45 cm. Using parameters provided in the ET design study [4] (λ= 1550 nm,
G= 21.6 and two transmissions through the 50 cm silicon optics) yields D < -n 10 7 as an
upper limit for the tolerable birefringence. Please note that this derivation neither takes into
account signal-recycling nor the injection of squeezed states. Signal-recycling uses an
additional mirror, called signal recycling mirror (SRM), placed between the beam splitter and
the photo diode to resonantly influence the amplitude of the signal sidebands created by GWs.
The SRM reects a fraction of the light, leaving the interferometer through the detection port,
back into the interferometer [21]. This conguration increases the signal strength of the
interferometer in a frequency range depending on the microscopic position of SRM.
Generally two ways of operation are distinguished: ‘signal recycling’ where the storage time
of sidebands is increased by setting the SRM position to resonance for a certain frequency,
which increases the sensitivity within the bandwidth of resonance, and ‘resonant sideband
extraction’ where SRM is tuned to anti-resonance reducing the storage time of the GW
sidebands in the arm cavities and thus widening the sensitive bandwidth of the interferometer.
The introduction of SRM generally changes the tolerable optical losses. The ET-LF
interferometer will use signal-recycling tuned to a resonance of 25 Hz. With the ET-LF
parameters the use of signal recycling does not increase the requirements for optical losses
beyond the demands for power recycling. This is a consequence of the large SRM
transmission (20%).

Squeezed light injected through the signal port of the interferometer results in a more
demanding limit for the maximally tolerable losses. The sensitivity gain in a GW detector
using squeezed light depends on its optical losses. Aiming for a squeezing level of 10 dB
requires a system with total optical losses Λ < 10% [12] and hence the losses resulting from
birefringence effects alone should be considerably smaller; let us assume Λ < 1% as a limit.
With the design parameters of ET-LF this results in D < -n 10 .8

Relation (1), however, assumes the worst case scenario regarding the angle between
either of the axes of the indices of refraction and the polarization of the laser light, i.e. an
angle of q = 45 . Carefully adjusting this angle θ and assuming a constant orientation and
value of birefringence in the beam volume inside the optics, can significantly relax the
derived limit for the maximally tolerable birefringence. Taking a variable misalignment angle
θ into account relation (1) becomes ([13] and references therein)

l
p q

> D
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟L G

narcsin
1

sin 2
. 2

2( )
( )

By reducing the angle θ from 45◦ to a value of θ = 4° the tolerable birefringence increases to

qD =  < -n 4 10 37( ) ( )

which is in the same order of magnitude as the initially derived limit for a power recycling
gain of G = 21.6. If a misalignment of θ = 1° can be achieved, the birefringence limit
increases to qD =  < ´ -n 1 5 10 .7( )
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1.2. Previous studies on birefringence in silicon

Previous measurements of birefringence of silicon have yielded variable values, some sur-
passing the threshold given in the previous section and others being well below that limit. In
1959, Lederhandler examined the birefringence of silicon parallel to the <111> direction
[22]. The team used light with a wavelength between 1100 and 1200 nm and samples with a
specific resistivity between 0.01Ω cm and 2 kΩ cm. The measured values of the birefringence
varied between ´ < D < ´- -n7 10 9 10 .4 4 In 1971 Pastrnak and Vedam [23] observed a
birefringence of Δn = 5 × 10−6 for a wavelength of 1150 nm in the 110 direction and none
in the 111 and 100 directions. In 2001, Fukuzawa et al [24] found that ‘thermal pro-
cessing’ of 3 inch (100) silicon wafers introduces ‘anomalous’ birefringence of about
D » -n 10 5 at a light wavelength of 1300 nm. This result points out that birefringence in
silicon might have origins in the production process. About a year later, Chu et al [25]
measured the birefringence of a silicon single crystal without lattice dislocations (dislocation-
free). Along the 110 configuration they measured D = ´ -n 3.2 10 6 at a wavelength of
1520 nm. Furthermore, they reported to have observed an ‘extremely small’ level of bire-
fringence when transmitting light along the 001 direction, while their method has been
capable of measuring values of the order of D » -n 10 .8

A summary of the results is given in table 1. All measurements were performed with
rather thin samples compared to the dimensions envisioned in ET, and furthermore lead to
partially contradictory results.

2. Experiment

In the scope of this work, detailed measurements were performed on sample 1, which is a
1.2 kg test mass having a specific resistivity of 11 kΩ cm with a direction of light propagation
being parallel to the 111 crystal orientation. The data shown in figures 3 and 4 have been
obtained using this sample. Furthermore, the data obtained with this sample have been used
for the stress simulations presented in section 4.

For comparison and to overcome the FSR ambiguity of our measurement technique we
analyzed other samples (samples 2–4) with the same crystal orientation but different thick-
nesses and different values of resistivity. The laser wavelength was always 1550 nm.

Commonly, birefringence is measured by using a set of two polarizers with an angle of
90◦ between their optical axes. This setup prevents light from being transmitted through both

Table 1. Birefringence of crystalline silicon depending on crystal orientation and
wavelength as measured in previous experiments by other authors. (*) value reported
‘not observed’ in the original publication

Direction of Wavelength Birefringence Year Source
light propagation in (nm) in (Δn)

111 1100–1200 7–9 × 10−4 1959 Lederhandler et al [22]
100 1150 <10−6 (*) 1971 Pastrnak et al [23]
110 1150 5 × 10−6 1971 Pastrnak et al [23]
111 1150 <10−6 (*) 1971 Pastrnak et al [23]
100 1300 » -10 5 2001 Fukuzawa et al [24]
110 1520 3.2 × 10−6 2002 Chu et al [25]
001 1520 » -10 8 2002 Chu et al [25]
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polarizers as the second polarizer blocks all light which is transmitted by the first polarizer. A
birefringent sample between the polarizers will partially convert the linearly polarized light
transmitted through the first polarizer into the orthogonal polarization which will pass through
the second polarizer. The implementation of a polarization modulator then allows a quanti-
tative determination of the birefringence [26–28]. In this work, we use a different approach to
measure birefringence, which circumvents the use of polarization modulation and hence
avoids the necessity to detect small intensity variations of a light field. The method is
explained in detail in the next section.

2.1. Experimental setup

The experimental setup is shown in figure 2. The silicon sample under investigation is
equipped with convex polished surfaces and highly reflective Ta2O5/SiO2 coatings which let
the sample form a monolithic cavity. A laser beam of 1550 nm wavelength is coupled into the
monolithic silicon cavity. In order to be coupled resonantly into an optical cavity the light
field needs to fulfill the condition [29]

l =N nd2 , 4( )

where N is an integer, λ denotes the wavelength, n the index of refraction and d is the
geometric length of the cavity. Note that the Gouy phase term has been neglected in this
expression.

Birefringence means two different indices of refraction ne and no for light of two
orthogonal linear polarizations (designated e-pol and o-pol in figure 2, respectively). Tuning
the laser frequency ν produces two resonances per free spectral range—one per polarization—
that can be detected in transmission and reflection of the cavity. The frequency spacing Δ f of
the resonances allows the deduction of the level of birefringence of the silicon sample under
investigation. Similar approaches of measuring birefringence have been used earlier in order
to measure the birefringence of high reflective mirrors [14, 15].

Figure 2. Schematic experimental setup. The frequency of linearly polarized laser light
with wavelength of 1550 nm is varied over a range of 60 MHz, actuating the laser’s
piezo-electric crystal. The light is transmitted through an electro-optic modulator
(EOM) driven at 15 MHz. The EOM is used to imprint sidebands to the light field in
order to calibrate the frequency axis of the recorded data. A λ/2 wave-plate is used to
adjust the polarization and hence the power in the resonant modes such that both yield
comparable signal strengths. The light field transmitted through the cavity and detected
by a photo detector (PD1) is used to record the intensity maxima of the cavity modes.
The reflected field (detected by PD2) is used to generate Pound–Drever–Hall type error
signals which show a higher signal to noise ratio with respect to the dark noise of the
photo detectors than the sidebands transmitted through the cavity. FG: function
generator.
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In our experiment, the laser was phase modulated with a frequency n n .m The
resulting sidebands served as calibration markers for measuring the frequency difference Δ f
of the two birefringent cavity modes. The laser frequency actuator itself was not sufficiently
linear over a full free spectral range of the cavity.

2.2. Theoretical background

Assuming a birefringent cavity as described above. Let no and ne denote its orthogonal indices
of refraction. Similarly, let no and ne denote the laser frequencies, which let λo and λe meet the
resonance condition (equation (4)) with a given number of nodes No and Ne inside the cavity,
respectively. Having defined the frequency spacing between the resonance maxima asΔ f and
denoting the birefringence Δ n, we get n n= - D fe o and similarly = + Dn n n.e o

The resonance conditions (equation (4)) for both polarizations then is

n n
= =N

d n

c
N

d n

c

2
and

2
, 5o

o o

0
e

e e

0
( )

with c0 denoting the speed of light in vacuum. Assuming l l l lD = - e o o both
polarizations are resonant with the same number of nodes inside the cavity (we will justify
this assumption below) and hence =N N .o e Setting n n=o and no = n leads to n n= - D fe

and = + Dn n ne which allows to omission of the indices. Since these conditions are valid
for the same number of nodes N, this leads to

n
D =

D
- D

n n
f

f .
6· ( )

which gives us the birefringence Δ n once the frequency difference Δ f between the two
resonances of the cavity is known.

The measured frequency spacing Δ f is, however, ambiguous as it can only be measured
modulo free spectral ranges  = c dn20 of the cavity. If Δ f were to be greater than one
free spectral range, one polarization would fulfill the resonance condition with a given
number of nodes N while the perpendicular polarization would fulfill it with another number
of nodes N + Δ N, where Δ N is an integer. Since the mode pattern of the cavity repeats
every free spectral range, it is not possible to distinguish whether two maxima arise out of the
same free spectral range when simply observing the light transmitted through the cavity.

This ambiguity could be overcome by changing the laser frequency over hundreds FSRs
of the cavity. If the peaks do not arise from the same FSR, a small change of Δ f should be
observable. The expected change of Δ f for our largest possible laser frequency change was
calculated to be lower than the accuracy of our measurement method. This problem, however,
can be circumvented by changing the FSR of the cavity. In this work we exploit the
dependence of the cavity’s FSR on the cavity length d and measure Δ f of different cavities
made from the same material but having different lengths d.

3. Silicon samples

Silicon has a cubic face-centered lattice structure [30]. It is known that such structures have
vanishing natural birefringence, however, applied stress and external loads can change this
behaviour [30]. As the test masses in interferometric GW detectors have weights of many
kilograms and are suspended as pendulums, it has to be examined in which way stress affects
the optical properties of silicon.
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3.1. Overview of samples

Within this work a silicon sample with a mass of 1.2 kg and cylindrical shape (with small
lateral flat areas) has been examined (sample 1). Three additional samples (samples 2, 3 and
4) of different thicknesses have been used to determine whether the observed modes resonate
in the same FSR (Δ N= 0).

These additional samples have thicknesses between 2.8 and 9.9 cm, have a diameter of
2.4 cm, and give rise to free spectral ranges covering the range from 435MHz to 1.54 GHz.
The values obtained for the frequency spacing Δ f are at least two orders of magnitude below
the respective free spectral ranges (see table 2). This finding strongly suggests that the
observed transmission maxima indeed resonate in the same free spectral range, hence
Δ N = 0 allowing the application of the theory presented above.

The values of the birefringence for the laser beam propagating along the (111) axis are
below D ´ -n 0.49 10 7 for samples 3 and 4. This value of birefringence is well below the
limit ofD < -n 10 7 which has been derived in section 1.1 for arbitrary test mass orientation.
With D ´ -n 1.11 10 7 sample 2 shows a birefringence which is slightly above the derived
limit. However, aligning the sample better than θ = 4° would keep the birefringence within
the derived limits of section 1.1.

The experimentally obtained values of the birefringence for these four samples sig-
nificantly scatter, strongly depending on the sample under investigation. As inherent strain
has been observed in sample 1 (see section below) it seems likely that such inherent strain is
present in the remaining samples as well. Such inherent strain resulting from the production
process can explain the scattering of the measured data observed in this work.

3.2. Sample 1

With strong experimental evidence that the assumption Δ N = 0 is correct sample 1 has been
used for a deeper analysis of birefringence in silicon.

In order to determine the effects of the test mass weight on the birefringence two different
experiments have been performed. First the sample has been placed ‘vertically’ such that the
gravitational force acts parallel to the optical axis of the cavity (see figure 5(b)). In this
position a birefringence of D = ´ -n 0.61 10 7 has been observed, independent of a rotation
around the sample’s cylindrical axis as depicted in figure 3. Due to the problem’s symmetry
the gravitational force causes a radially symmetric strain inside the sample leading to a
vanishing birefringence along the cylindrical axis. Hence no birefringence (Δ n= 0) is
expected, which is in contrast to the experimental finding.

Table 2. Dimensions and physical properties of silicon samples under investigation.
Masses have been calculated with a density of 2330 kg m−3 [30]. All substrates have
the shape of cylinders with biconvex faces with the light propagating along the (111)
direction. The radius of curvature of the faces through which light is coupled into the
substrate equals 2 m for all samples except for the 65 mm sample which has a radius of
curvature of 1 m. Samples 2 and 4 are made out of the same material.

Sample Thickness Diameter Resistivity Mass Δ f, Δ n × 10−7 FSR
number (mm) (mm) (kΩ cm) (kg) (MHz) (MHz)

1 65 100 11 1.2 1.26–5.98 0.23–1.07 663
2 28 24 2 0.059 6.00–6.20 1.08–1.11 1539
3 30 24 30–70 0.063 1.85–2.71 0.33–0.49 1437
4 99 24 2 0.21 0.48–0.96 0.09–0.17 435
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In a second measurement the cavity has been placed ‘horizontally’ such that the grav-
itational force is acting perpendicular to the optical axis. In this configuration, which is shown
in figure 5(a) with an angle between the supporting rods of f = 120 (see figure caption), the
birefringence has been measured at different angles α representing a rotation along the optical
axis of the cavity. In this case the gravitational force should lead to an anisotropic stress
configuration giving rise to birefringence. But the symmetry of such a rotation predicts a
constant level of birefringence. In contrast to these considerations the experimental results of
birefringence show a periodic pattern presented in figure 3. The results range between

 D ´n0.23 10 1.07.7 The mean value of Δ n is close to the birefringence, which has
been observed when the gravitational force acts parallel to the optical axis of the sample. This
superposition of intrinsic and external stress would allow a minimization of the overall
birefringence if the required external stress could be produced by the test mass suspension in a
GW detector and the orientation and level of intrinsic birefringence was predictable.

In order to determine how external forces might change the measured birefringence, the
sample has been placed onto one of its flats while an extra weight has been placed on top of
the opposing flat (see figure 5(c)). A clear linear dependence between the birefringence Δ n
and the external load has been observed as shown in figure 4. Up to an external weight of
9 kg, no deviation from the linear behaviour has been observed.

The behaviour of the birefringence is, however, subject to the respective mounting.
While a load dependence has been seen using a support from below (figure 5(c)) a load
independent birefringence is obtained using two supports at f = 120 shown in figure 5(a)
and an external load on top. Due to the symmetry of the support in the latter setup an external
load from the top of the sample is not expected to cause an anisotropic stress along the axis of
the test mass. Thus a change of the external load should not change the observed level of
birefringence.

Figure 3. Dependence of the birefringence of sample 1 (∅65 mm × 100 mm) on the
angle of rotation f. If the gravitational force acts parallel to the optical axis of the
cavity the birefringence stays constant, independent of f (red data points). If the
gravitational force acts perpendicular to the optical axes a clear periodic pattern is
observed (black data points). The lines indicate the results of our numerical
calculations.
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4. Stress simulations

Figures 3 and 4 show that external forces acting on sample 1 cause additional birefringence
inside the crystal. Furthermore, birefringence is present even if no external force is applied to
the sample. In order to explain this behavior and to predict the effect of birefringence
considering the test masses and their suspensions as proposed for the ET design, a finite
element analysis (FEA) was conducted.

Figure 4. Dependence of the birefringence of sample 1 (∅65 mm × 100 mm) on the
weight of an external load (elastic strain). A clear linear dependence between the
measured birefringence and a mass placed on top of the sample as shown in figure 5(c)
has been observed.

Figure 5. Schematic of different ways to support the samples under investigation. The
sample is colored blue while the support structures are black. (a) Support used for
samples 1–4 in the scope of this work. The sample is supported by two different Teflon
bars forming the angle f. (b) Sample 1 has been placed in a way such that the
gravitational force acted parallel to the cylinder axis, thus eliminating any effects
perpendicular to the direction of beam propagation. (c) Support used to determine the
dependence of birefringence of the external forces. The sample is supported by a single
bar directly from beneath. The load is placed on top. (d) Test mass suspension of GW
detectors using wires attached to the sample.
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4.1. Relation of strain and birefringence

Any mechanical force acting on a solid will cause stress and strain within the sample. Via the
photoelastic effect the strain ukl in the sample causes a change of the optical properties that is
described by the tensor of impermeability Bij. Using the photoelastic tensor pijkl the change of
the tensor of impermeability can be expressed as

D =B p u . 7ij ijkl kl ( )

In the following we exclusively use the Voigt contraction of index pairs ( « xx1 , « yy2 ,
« xy6 ) yielding

D =B p u . 8i ij j ( )

In the strainless state silicon with its cubic lattice shows isotropic optical properties.
Thus, the ellipsoid representing the tensor of impermeability shows a spherical shape. Any
strain inside the sample will deform this sphere to an ellipsoid. An incoming wave will cut
this ellipsoid by the plane normal to its wave vector resulting in a two-dimensional ellipse.
The two semiaxes of this ellipse then determine the effective difference in the refractive index
of differently polarized light. Adjusting the wave vector of the incoming wave along the z axis
of the material coordinate system the ellipsoidal equation reads

+ + =B x B y B xy2 1. 91
2

2
2

6 ( )

To find the semiaxes of this ellipse a rotation of the coordinate system by an angle j with

j =
-
B

B B
tan 2

2
, 106

1 2
( ) ( )

has to be applied. In this new coordinate system the new coefficient B6˜ vanishes and the
semiaxes are obtained from the remaining parameters as

j j j j= + +B B B Bcos sin 2 cos sin , 111 1
2

2
2

6˜ ( )

j j j j= + -B B B Bsin cos 2 cos sin . 122 1
2

2
2

6˜ ( )
These are connected to a change in the refractive index Δ ni via

=
+ D

B
n n

1
. 13i

i0
2( )

˜ ( )

In the approximation of small strains and thus small changes in the impermeability an
expression for the difference in the refractive indices due to birefringence can be found. It
reads

D = D - D = - -n n n
n

B B
2

, 141 2
0
3

1 2( )˜ ˜ ( )

where n0 represents the isotropic refractive index of unstrained silicon.

4.2. Plastic strains

The stress induced birefringence effects discussed above are not sufficient to completely
describe the experimental results. Firstly, the vertically aligned cavity (figure 5(b)) reveals a
non-vanishing birefringence. Due to the rotational symmetry of the gravitational load and the
elastic properties of the crystal birefringence should vanish along the cylindrical axis. Sec-
ondly, the rotation results of the horizontally aligned cavity shows a non-vanishing mean as
expected due to gravitational strains. However, in the experiment this constant value is
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superimposed by an additional modulation of birefringence exhibiting a two-fold symmetry.
As the elastic constants of silicon show a three-fold symmetry along its crystalline 111 axis,
the above behavior cannot be explained by the rotation of the elasticity matrix.

These experimental findings lead us to introduce another strain contribution causing
birefringence in our sample. In a simple model we allowed for an additional plastic strain
whose orientation is fixed within the sample. Assuming a uniaxial character of such a plastic
strain results in the following Voigt notation

=u u , 0, 0, 0, 0, 0 . 15p
0( ) ( )

A rotation of the sample can be considered as a rotation of the coordinate system to describe
the plastic strain tensor introduced above. Following the tensor laws a rotation of the
coordinate system by an angle α leads to modified strain coefficients of

a a a a= -u u u ucos , sin , 0, 0, 0, 2 sin cos . 16p
0

2
0

2
0( ) ( )

Plastic strains are known to be produced in the manufacturing process of crystalline
silicon samples. Mainly during the cooling process temperature gradients arise within the
crystal leading to thermal strains. These thermal strains are frozen in during the cooldown
process and remain as plastic strains once the sample reaches a homogeneous temperature
distribution at room temperature. See e.g. [22] for a more detailed discussion of this process.

4.3. Simulation

Considering the total strain within the sample as the sum of elastic strains uel due to grav-
itational and external loads and plastic strain up

= +u u u , 17tot el p ( )
allows an efficient explanation of the experimental results. Above the elastic strains uel have
been obtained from a 2D plane strain analysis using the finite element package COMSOL. In
this calculation we kept the global coordinate system fixed and accounted for the rotation of
the sample by the modification of the coefficient of the elasticity tensor. The plastic
contribution has been taken from equation (16). Finally inserting utot from equation (17) into
equation (7) yields the change of the impermeability tensor. From this the birefringence can
be calculated via (14). Please note that for these calculations literature values for the tensor of
elasticity as well as for the photoelastic tensor have been used. Due to its cubic structure the
Voigt notation of the tensor of elasticity for silicon reads

=

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
C

c c c
c c c
c c c

c
c

c

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

. 18ij

11 12 12

12 11 12

12 12 11

44

44

44

( )

In the following we use the values =c 165.7 GPa,11 =c 63.9 GPa12 and =c 79.6 GPa44

from [31]. While in general the tensor of photoelasticity is not symmetric the point group of
silicon results in the same matrix structure as for the tensor of elasticity. Following Biegelsen
[32] we use = -p 0.094 GPa,11 =p 0.017 GPa12 and = -p 0.051 GPa44 as photoelastic
coefficients in silicon. As we fix the global coordinate system in our analysis the coefficients
of the material tensors have to be adopted due to rotation. For completeness we state this
rotated form in the appendix.
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With this model considering plastic as well as elastic strains in the sample we are able to
fully explain the behavior of a horizontally and a vertically aligned cavity as presented in
figure 3. In this respect the theoretical curves for all measurements have been obtained with a
single fitting parameter for the plastic strain = ´ -u 2.7 100

8 that is characteristic to our
sample. It turns out that in our sample the birefringent effects of plastic strains and strains
induced by gravitation are in the same order of magnitude. Further, the birefringence with
respect to an additional external loading is explained by the same approach which can be seen
in figure 4.

Birefringence in the samples examined within the scope of this work can be caused by
the bulk material or by the coated cavity surfaces. The latter is realized as a classical λ/4 layer
stack of two alternating coating materials exhibiting a high and low index of refraction.
Although the stack shows 20 layer pairs in total most of the light is reflected by the first few
coating layers, significantly reducing the effective coating thickness. The substrate has,
however, a thickness which is about four orders of magnitude larger than the entire coating
material. Consequently, the coating had to cause a birefringence 104 times bigger than the
birefringence of the bulk material in order to cause the same frequency spacing. Furthermore,
the application of the coating is performed at significantly lower temperatures than the pro-
duction of silicon. For this reason the frozen-in plastic strains are expected to be much smaller
in the coating as well. Moreover, the birefringence induced in the coating due to differences in
the coefficients of thermal expansion between bulk and coating should lead to a radially
symmetric pattern with no strain, and consequently negligeable birefringence, on the sym-
metry axis. We hence neglected the contribution of the coating to the birefringence in the
analysis above an approach which is supported by the values given in [14–16]. Furthermore,
thermal absorption has been mentioned as a source of birefringence [33].

In our model plastic strains are fixed in the sample’s coordinate system while the elastic
strain is oriented along the gravitational force and thus fixed in the global coordinate system.
Rotating the sample around its cylindrical axis thus leads to a variation of the total strain in
the sample. This allows the minimization of the birefringent effects due to a partial com-
pensation of both strains by a respective choice of the sample’s rotation angle. Such a scheme
also allows for the reduction of optical losses due to birefringence in future GW detectors if
gravity induced strain and internal strain are of comparable magnitude.

4.4. Predictions for the ET

In this section our experimental results are transferred to suspended pendula as shown in
figure 5(d). To incorporate the effect of the different mechanical load scheme we ran another
FEA calculation. We focused on predicting the birefringence introduced by gravity using the
same parameters that have been successfully used to explain our experimental findings before.

This additional computation has been performed on a test mass geometry proposed for
the ET-LF, i.e. using cylindrical substrates with a diameter of 45 cm and a thickness of 50 cm.
For any point on the sample the difference of the index of refraction due to birefringence has
been evaluated using equation (14) and is presented in figure (6). Across the sample the
values of birefringence change significantly between D » -n 10 8 close to the suspension
points and D -n 10 10 within the central part ( <r 1 cm) of the test mass.

In contrast to our cavity measurements the beam size (ca. 86% of power inside) in ET-LF
will be about 9 cm to reduce thermal noise. Such a beam will sense not only a single point on
the test mass but a larger area. In order to determine the total level of birefringence
encountered by a transmitting beam a sophisticated averaging has to be applied. For our
purpose, however, it is sufficient to take the maximum value of Δn within the beam diameter
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and use it for calculations of a worst case scenario. Our simulation yields a maximum
birefringence ofD » -n 10 9 in the area of beam transmission. These values are two orders of
magnitude below the upper limit ofD < -n 10 7 obtained earlier. Although in our analysis we
used a 2D model including suspended lines instead of suspended points this result suggests,
that elastic birefringence should be no limit for the ET. However, this calculation gives no
insight into the birefringence due to plastic strains, which have been causing a higher level of
birefringence (D » -n 10 7) in the samples examined in the scope of this work and may be
even larger for ET size test masses.

4.5. Comparison of test mass materials

Sapphire has been proposed as a test mass material which will be implemented in the
KAGRA GW detector. While silicon is isotropic, sapphire is a uniaxial material [30] which
gives rise to an intrinsic birefringence between the c-axis and the a-axes of

- = ´ -n n 8 10 .a c
3 Letting the light propagate along the c-axes of the sapphire crystal

should minimize the birefringence. In their work Yan et al [34] measured values for the
birefringence in sapphire cylinders of 15 cm diameter and 6 cm thickness with light propa-
gating parallel to the c-axis to exceed the values of silicon obtained in this work by
30%–40%.

5. Conclusion

In this paper we present a sensitive method for the experimental characterization of bire-
fringence in optical materials. It is based on the evaluation of the frequency spacing between
the two orthogonally polarized optical resonances of a monotlithic cavity made of the
respective material. Applying this method to a monocrystalline silicon (111) cavity at room
temperature, we investigated the dependence of birefringence on a rotation of the sample as

Figure 6.Modelled refractive index change in a suspended silicon ET-LF test mass due
to stress induced birefringence due to gravity. The color code shows that high values
for Δn are concentrated around the suspension points of the sample. The red lines
indicate levels of constant Δn of 0.1 × 10−9, 0.5 × 10−9, 1.0 × 10−9, and 1.5 × 10−9.
Within the laser beam radius (dashed circle) the amplitude of birefringence is well
below 10−9. Thus, birefringence due to the gravitational load should not affect the
design sensitivity of ET-LF.
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well as on an external load. The method presented can be applied to cavities at arbitrary
temperatures which allows the examination of silicon birefringence at cryogenic temperatures
without changing the measurement method. Since the test masses of the low frequency
interferometers of ET will be operated at such temperatures, the measurements performed in
the scope of this work should be repeated at cryogenic temperatures. Utilizing FEA calcu-
lations allowed us to explain the observed behavior by a superposition of elastic strains due to
gravity or external loads as well as plastic strains that show a fixed orientation within the
sample. The measurements have further shown that it was possible to significantly reduce the
amount of present birefringence by choosing an appropriate superposition of elastic and
plastic strain in the sample. This is, however, only possible as long as both elastic and plastic
strain are on the same order of magnitude.

Applying our results to the proposed ET-LF design suggests that the gravity-induced
birefringence along the test mass axis is negligibly small in this detector. Thus the level of
plastic strains in the sample are likely to dominate the birefringence in such an application.

The injection of squeezing demands a level of birefringence which can be met by
aligning sample and polarization better than 4°. Such an alignment would allow the use of all
sample materials examined in this work in a GW detector. If local variations of the level of
birefringence or a locally variable orientation of the axes of the indices of refraction existed,
however, the effect of this approach would be limited. A more detailed investigation of the
sources of plastic strains, including large silicon crystals, should be performed in the future.
Former works [22] on crystalline silicon already identified a clear correlation between regions
showing a high density of dislocations and regions showing an increased level of birefrin-
gence. While current silicon crystals show nearly no dislocations our experiments revealed
that there is still a considerable contribution of plastic strains to birefringence. Annealing the
samples or reducing the cooling rates during and after crystal growth may be a way to
minimize plastic strains. Further experiments on birefringence distribution can help to identify
the geometry of microscopical defects frozen in during crystal growth and causing plastic
strains in the sample.
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Appendix. Coefficients of rotated coordinate system

In cubic systems the simplest shape of a fourth order tensor can be obtained by chosing the
(100) axes as basis vectors (ex, ey, ez). Then the Voigt representation of the tensor exhibits the
shape shown in equation (18). To describe a cylinder in its geometry coordinate system the
cylindrical axis should be along the z axis of a new coordinate system ( ¢e ,x ¢e ,y ¢ez ). For the case
of a (111) orientation the new base vector ¢ez should point along the (111) direction of the old
basis, i.e. should be proprotional to the sum of the old basis + +e e e .x y z The general
transformation between the two systems of basis vectors reads

¢ =e a e , A.1i ij j ( )
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with

a a a a a
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In the equation above α represents the rotational angle along the cylindrical axis which
remains as a degree of freedom in the orientation of the new coordinate system. With the
knowledge of the coordinate transform tensor aij the coefficients of the fourth rank material
tensors in new coordinates are available as

¢ =C a a a a C . A.3ijkl ii jj kk ll i j kl ( )˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

An explicit calculation and transform to Voigt notation reveals

¢ =

¢ ¢ ¢ -
¢ ¢ -
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with a symmetric expansion to the lower half of the matrix. The connection to the three
original coefficients is obtained by the following equations

¢ = + + ¢ = + -c c c c c c c c
1

2
2 ,

1

6
5 2 , A.511 11 12 44 12 11 12 44( ) ( ) ( )

a¢ = + - ¢ = + -c c c c c c c c
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3
2 2 ,
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3 2
2 , A.613 11 12 44 14 44 12 11( ) ( )( ) ( )
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3 2
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3
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¢ = - + ¢ = ¢ - ¢ = - +c c c c c c c c c c
1

3
,

1

2

1

6
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The same rule of transformation holds for the photoelastic tensor in silicon as it exhibits the
same structure as the elasticity tensor. Further these new coefficients ¢cij enter into the final
evaluation of the birefringence.
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