31 research outputs found

    Experimental Oral Transmission of Chronic Wasting Disease to Reindeer (Rangifer tarandus tarandus)

    Get PDF
    Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, remains prevalent in North American elk, white-tailed deer and mule deer. A natural case of CWD in reindeer (Rangifer tarandus tarandus) has not been reported despite potential habitat overlap with CWD-infected deer or elk herds. This study investigates the experimental transmission of CWD from elk or white-tailed deer to reindeer by the oral route of inoculation. Ante-mortem testing of the three reindeer exposed to CWD from white-tailed deer identified the accumulation of pathological PrP (PrPCWD) in the recto-anal mucosa associated lymphoid tissue (RAMALT) of two reindeer at 13.4 months post-inoculation. Terminal CWD occurred in the two RAMALT-positive reindeer at 18.5 and 20 months post-inoculation while one other reindeer in the white-tailed deer CWD inoculum group and none of the 3 reindeer exposed to elk CWD developed disease. Tissue distribution analysis of PrPCWD in CWD-affected reindeer revealed widespread deposition in central and peripheral nervous systems, lymphoreticular tissues, the gastrointestinal tract, neuroendocrine tissues and cardiac muscle. Analysis of prion protein gene (PRNP) sequences in the 6 reindeer identified polymorphisms at residues 2 (V/M), 129 (G/S), 138 (S/N) and 169 (V/M). These findings demonstrate that (i) a sub-population of reindeer are susceptible to CWD by oral inoculation implicating the potential for transmission to other Rangifer species, and (ii) certain reindeer PRNP polymorphisms may be protective against CWD infection

    Accessory gland as a site for prothoracicotropic hormone controlled ecdysone synthesis in adult male insects

    Get PDF
    Insect steroid hormones (ecdysteroids) are important for female reproduction in many insect species and are required for the initiation and coordination of vital developmental processes. Ecdysteroids are also important for adult male physiology and behavior, but their exact function and site of synthesis remains unclear, although previous studies suggest that the reproductive system may be their source. We have examined expression profiles of the ecdysteroidogenic Halloween genes, during development and in adults of the flour beetle Tribolium castaneum. Genes required for the biosynthesis of ecdysone (E), the precursor of the molting hormone 20-hydroxyecdysone (20E), are expressed in the tubular accessory glands (TAGs) of adult males. In contrast, expression of the gene encoding the enzyme mediating 20E synthesis was detected in the ovaries of females. Further, Spookiest (Spot), an enzyme presumably required for endowing tissues with competence to produce ecdysteroids, is male specific and predominantly expressed in the TAGs. We also show that prothoracicotropic hormone (PTTH), a regulator of E synthesis during larval development, regulates ecdysteroid levels in the adult stage in Drosophila melanogaster and the gene for its receptor Torso seems to be expressed specifically in the accessory glands of males. The composite results suggest strongly that the accessory glands of adult male insects are the main source of E, but not 20E. The finding of a possible male-specific source of E raises the possibility that E and 20E have sex-specific roles analogous to the vertebrate sex steroids, where males produce primarily testosterone, the precursor of estradiol. Furthermore this study provides the first evidence that PTTH regulates ecdysteroid synthesis in the adult stage and could explain the original finding that some adult insects are a rich source of PTTH

    The Photosynthetic Apparatus and Its Regulation in the Aerobic Gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov

    Get PDF
    BACKGROUND: There is accumulating evidence that in some marine environments aerobic bacteriochlorophyll a-producing bacteria represent a significant part of the microbial population. The interaction of photosynthesis and carbon metabolism in these interesting bacteria is still largely unknown and requires further investigation in order to estimate their contribution to the marine carbon cycle. METHODOLOGY/PRINCIPAL FINDINGS: Here, we analyzed the structure, composition and regulation of the photosynthetic apparatus in the obligately aerobic marine gammaproteobacterium KT71(T). Photoheterotrophically grown cells were characterized by a poorly developed lamellar intracytoplasmic membrane system, a type 1 light-harvesting antenna complex and a photosynthetic reaction center associated with a tetraheme cytochrome c. The only photosynthetic pigments produced were bacteriochlorophyll a and spirilloxanthin. Under semiaerobic conditions KT71(T) cells expressing a photosynthetic apparatus showed a light-dependent increase of growth yield in the range of 1.3-2.5 fold. The expression level of the photosynthetic apparatus depended largely on the utilized substrate, the intermediary carbon metabolism and oxygen tension. In addition, pigment synthesis was strongly influenced by light, with blue light exerting the most significant effect, implicating that proteins containing a BLUF domain may be involved in regulation of the photosynthetic apparatus. Several phenotypic traits in KT71(T) could be identified that correlated with the assumed redox state of growing cells and thus could be used to monitor the cellular redox state under various incubation conditions. CONCLUSIONS/SIGNIFICANCE: In a hypothetical model that explains the regulation of the photosynthetic apparatus in strain KT71(T) we propose that the expression of photosynthesis genes depends on the cellular redox state and is maximal under conditions that allow a balanced membrane redox state. So far, bacteria capable of an obligately aerobic, photosynthetic metabolism constitute a unique phenotype within the class Gammaproteobacteria, so that it is justified to propose a new genus and species, Congregibacter litoralis gen. nov, sp. nov., represented by the type strain KT71(T) ( = DSM 17192(T) = NBRC 104960(T))

    Volatile Organic Compounds Emitted by Fungal Associates of Conifer Bark Beetles and their Potential in Bark Beetle Control

    Get PDF
    Conifer bark beetles attack and kill mature spruce and pine trees, especially during hot and dry conditions. These beetles are closely associated with ophiostomatoid fungi of the Ascomycetes, including the genera Ophiostoma, Grosmannia, and Endoconidiophora, which enhance beetle success by improving nutrition and modifying their substrate, but also have negative impacts on beetles by attracting predators and parasites. A survey of the literature and our own data revealed that ophiostomatoid fungi emit a variety of volatile organic compounds under laboratory conditions including fusel alcohols, terpenoids, aromatic compounds, and aliphatic alcohols. Many of these compounds already have been shown to elicit behavioral responses from bark beetles, functioning as attractants or repellents, often as synergists to compounds currently used in bark beetle control. Thus, these compounds could serve as valuable new agents for bark beetle management. However, bark beetle associations with fungi are very complex. Beetle behavior varies with the species of fungus, the stage of the beetle life cycle, the host tree quality, and probably with changes in the emission rate of fungal volatiles. Additional research on bark beetles and their symbiotic associates is necessary before the basic significance of ophiostomatoid fungal volatiles can be understood and their applied potential realized

    T-cell recognition of an immuno-dominant myelin basic protein epitope in multiple sclerosis

    No full text
    Multiple sclerosis is thought to be an autoimmune disease of the central nervous system mediated by T cells specific for a myelin antigen. Myelin basic protein has been studied as a potential autoantigen in the disease because of its role as an encephalitogen in experimental autoimmune encephalomyelitis and post-viral encephalomyelitis and because of the presence in the blood of multiple sclerosis patients of in vivo-activated T cells reactive to myelin basic protein. Immune involvement in multiple sclerosis has been further suggested by the association with the major histocompatibility complex class II phenotype DR2, DQw1. To define the T-cell specificity toward myelin basic protein, 15,824 short-term T-cell lines were established from multiple sclerosis subjects, subjects with other neurological diseases, and normal controls. Here we report a higher frequency of T-cell lines reactive with a DR2-associated region of myelin basic protein between residues 84-102 in patients with multiple sclerosis compared with controls. A second region, identified between residues 143-168, was recognized equally in multiple sclerosis patients and controls and was associated with the DRw11 phenotype. These DR2 and DRw11 associations were also observed among T-cell lines generated from family members of a multiple sclerosis patient. The immunodominant 84-102 peptide from myelin basic protein was both DR2- and DQw1-restricted among different T-cell lines. These results raise the possibility that this immunodominant region may be encephalitogenic in some DR2+ individuals

    Use of transcriptomic data for extending a model of the AppA/PpsR system in Rhodobacter sphaeroides

    No full text
    BackgroundPhotosynthetic (PS) gene expression in Rhodobacter sphaeroides is regulated in response to changes in light and redox conditions mainly by PrrB/A, FnrL and AppA/PpsR systems. The PrrB/A and FnrL systems activate the expression of them under anaerobic conditions while the AppA/PpsR system represses them under aerobic conditions. Recently, two mathematical models have been developed for the AppA/PpsR system and demonstrated how the interaction between AppA and PpsR could lead to a phenotype in which PS genes are repressed under semi-aerobic conditions. These models have also predicted that the transition from aerobic to anaerobic growth mode could occur via a bistable regime. However, they lack experimentally quantifiable inputs and outputs. Here, we extend one of them to include such quantities and combine all relevant micro-array data publically available for a PS gene of this bacterium and use that to parameterise the model. In addition, we hypothesise that the AppA/PpsR system alone might account for the observed trend of PS gene expression under semi-aerobic conditions. ResultsOur extended model of the AppA/PpsR system includes the biological input of atmospheric oxygen concentration and an output of photosynthetic gene expression. Following our hypothesis that the AppA/PpsR system alone is sufficient to describe the overall trend of PS gene expression we parameterise the model and suggest that the rate of AppA reduction in vivo should be faster than its oxidation. Also, we show that despite both the reduced and oxidised forms of PpsR binding to the PS gene promoters in vitro, binding of the oxidised form as a repressor alone is sufficient to reproduce the observed PS gene expression pattern. Finally, the combination of model parameters which fit the biological data well are broadly consistent with those which were previously determined to be required for the system to show (i) the repression of PS genes under semi-aerobic conditions, and (ii) bistability. ConclusionWe found that despite at least three pathways being involved in the regulation of photosynthetic genes, the AppA/PpsR system alone is capable of accounting for the observed trends in photosynthetic gene expression seen at different oxygen levels.</p

    T cell help is required to induce idiotypic–anti-idiotypic autoantibody network after immunization with complementary epitope 289–308aa of La/SSB autoantigen in non-autoimmune mice

    No full text
    Immunotherapies against autoimmune diseases have been of limited success. Preventive vaccines could be developed on the basis to abrogate unwanted immune responses to defined autodeterminants. In this study it is shown that immunization of BALB/c mice with two linear T and B cell epitopes of the human La/SSB autoantigen (spanning the regions 289–308aa and 349–364aa) and their complementary forms specified by the complementary mRNA, results in characteristic B and T cell responses. Mice immunized with the 289–308aa epitope or its complementary peptide elicited specific antibodies against both epitopes. In contrast, mice immunized with the 349–364aa epitope or its complementary peptide mounted antibody titres against the immunizing peptide only. According to these data, the 289–308aa epitope and its complementary form were capable to generate an idiotypic–anti-idiotypic response, which were cross-regulated. Peptide-specific T cell proliferation and cytokine production in vitro revealed the induction of a two-stage T helper response (Th1→Th2 type) after immunization with either the epitope 289–308 or its complementary peptide. IgG1 was the predominant subclass after immunization with the two forms of epitopes 289–308 and 349–364, while a response of the IgG2b > IgG2a was obtained after the immunization with the complementary form of 349–364 epitope reflecting the TH2/TH1 polarization, respectively. Our data suggest that the complementary peptides of two immunodominant epitopes of human LaSSB can mimic the autoantibodies against these epitopes and establish an active idiotypic–anti-idiotypic network
    corecore