53 research outputs found

    GenerTTS: Pronunciation Disentanglement for Timbre and Style Generalization in Cross-Lingual Text-to-Speech

    Full text link
    Cross-lingual timbre and style generalizable text-to-speech (TTS) aims to synthesize speech with a specific reference timbre or style that is never trained in the target language. It encounters the following challenges: 1) timbre and pronunciation are correlated since multilingual speech of a specific speaker is usually hard to obtain; 2) style and pronunciation are mixed because the speech style contains language-agnostic and language-specific parts. To address these challenges, we propose GenerTTS, which mainly includes the following works: 1) we elaborately design a HuBERT-based information bottleneck to disentangle timbre and pronunciation/style; 2) we minimize the mutual information between style and language to discard the language-specific information in the style embedding. The experiments indicate that GenerTTS outperforms baseline systems in terms of style similarity and pronunciation accuracy, and enables cross-lingual timbre and style generalization.Comment: Accepted by INTERSPEECH 202

    Improvement of islet transplantation by the fusion of islet cells with functional blood vessels

    Get PDF
    Pancreatic islet transplantation still represents a promising therapeutic strategy for curative treatment of type 1 diabetes mellitus. However, a limited number of organ donors and insufficient vascularization with islet engraftment failure restrict the successful transfer of this approach into clinical practice. To overcome these problems, we herein introduce a novel strategy for the generation of prevascularized islet organoids by the fusion of pancreatic islet cells with functional native microvessels. These insulin-secreting organoids exhibit a significantly higher angiogenic activity compared to freshly isolated islets, cultured islets, and non-prevascularized islet organoids. This is caused by paracrine signaling between the β-cells and the microvessels, mediated by insulin binding to its corresponding receptor on endothelial cells. In vivo, the prevascularized islet organoids are rapidly blood-perfused after transplantation by the interconnection of their autochthonous microvasculature with surrounding blood vessels. As a consequence, a lower number of islet grafts are required to restore normoglycemia in diabetic mice. Thus, prevascularized islet organoids may be used to improve the success rates of clinical islet transplantation

    Innovative use of industrially produced steel slag powders in asphalt mixture to replace mineral fillers

    Get PDF
    Using steel slag to partially replace the natural aggregate in asphalt mixture to produce high-performance asphalt mixture has gained significant interest in recent years as a value-added option to recycle steel slag. However, the poor homogeneity of the material properties of steel slag aggregates remains a concern for this recycling approach. In this study, an innovative method of using industrially produced steel slag powder (SSP) to replace the mineral filler in asphalt mixture was proposed to address this concern. Five fillers, including four SSP fillers, obtained by grinding different steel slag aggregates with an industrialized production line, and one conventional limestone powder (LP) filler, were evaluated. The chemical compositions and micro-morphologies of the SSPs were first characterized to evaluate the material homogeneity and gain insights into the advantages of using SSPs as fillers. Then, asphalt mixtures with different fillers were designed and produced, and their moisture stability, rutting resistance, and low-temperature crack resistance, were characterized. It was found that the industrially produced SSPs possessed homogeneous properties, and improved the compatibility between filler particles and asphalt binder. Besides, the asphalt mixtures with SSP fillers showed better resistance to the moisture damage, permanent deformation, low-temperature crack in terms of fracture energy, than the asphalt mixture with LP filler. Therefore, it was concluded that using SSPs as a replacement of mineral fillers in asphalt mixture provided a reliable and value-added solution to recycle steel slag

    Arginine-vasopressin mediates counter-regulatory glucagon release and is diminished in type 1 diabetes.

    Get PDF
    Insulin-induced hypoglycemia is a major treatment barrier in type-1 diabetes (T1D). Accordingly, it is important that we understand the mechanisms regulating the circulating levels of glucagon. Varying glucose over the range of concentrations that occur physiologically between the fed and fuel-deprived states (8 to 4 mM) has no significant effect on glucagon secretion in the perfused mouse pancreas or in isolated mouse islets (in vitro), and yet associates with dramatic increases in plasma glucagon. The identity of the systemic factor(s) that elevates circulating glucagon remains unknown. Here, we show that arginine-vasopressin (AVP), secreted from the posterior pituitary, stimulates glucagon secretion. Alpha-cells express high levels of the vasopressin 1b receptor (V1bR) gene (Avpr1b). Activation of AVP neurons in vivo increased circulating copeptin (the C-terminal segment of the AVP precursor peptide) and increased blood glucose; effects blocked by pharmacological antagonism of either the glucagon receptor or V1bR. AVP also mediates the stimulatory effects of hypoglycemia produced by exogenous insulin and 2-deoxy-D-glucose on glucagon secretion. We show that the A1/C1 neurons of the medulla oblongata drive AVP neuron activation in response to insulin-induced hypoglycemia. AVP injection increased cytoplasmic Ca2+ in alpha-cells (implanted into the anterior chamber of the eye) and glucagon release. Hypoglycemia also increases circulating levels of AVP/copeptin in humans and this hormone stimulates glucagon secretion from human islets. In patients with T1D, hypoglycemia failed to increase both copeptin and glucagon. These findings suggest that AVP is a physiological systemic regulator of glucagon secretion and that this mechanism becomes impaired in T1D

    Compressive performance of underwater concrete columns strengthened by nondispersive mortar and stainless steel tubes

    No full text
    A novel type of underwater pier reinforcement technology was proposed. A non-dispersive mortar (NDM) and stainless steel tube (SS) were adopted to strengthen an underwater concrete column. The strengthened column takes advantage of the good adhesion of NDM and the corrosion resistance of SS. The NDM pouring and curing processes were both conducted in an underwater environment, which simulated the environment of underwater bridge pier reinforcement. An axial compression test was carried out on 16 strengthened columns and 3 unconfined concrete columns to explore the reinforcement effect of SS thickness and NDM type, including the 2–6 mm thickness of SS, the epoxy-based NDM, and the cement-based NDM. The test results indicated that all the specimens showed extrusion expansion failure. The increase in the thickness of SS resulted in a significant improvement in the load capacity of the specimens, and the stress-strain curves showed the strengthening stage and softening stage according to the confinement factor of the SS thickness. After adding cement-based NDM and epoxy-based NDM, the strength of the specimens increased by 6.2–21.4 % and 8.8–31.5 %, respectively. In the case of the same thickness of SS, cement-based NDM showed a better reinforcement effect. The stress-strain curves for the strengthened columns can be divided into three stages. Calculation models were proposed to predict the full stress-strain curves, including the calculation method of the capacity. The calculated results are in good agreement with the experimental data

    Phase Stability and Magnetic Properties of Mn3Z (Z = Al, Ga, In, Tl, Ge, Sn, Pb) Heusler Alloys

    No full text
    The structural stability and magnetic properties of the cubic and tetragonal phases of Mn3Z (Z = Ga, In, Tl, Ge, Sn, Pb) Heusler alloys are studied by using first-principles calculations. It is found that with the increasing of the atomic radius of Z atom, the more stable phase varies from the cubic to the tetragonal structure. With increasing tetragonal distortion, the magnetic moments of Mn (A/C and B) atoms change in a regular way, which can be traced back to the change of the relative distance and the covalent hybridization between the atoms

    Laser shape variation influence on melt pool dynamics and solidification microstructure in laser powder bed fusion

    No full text
    The shape variation of the laser beam is evidently observed in the laser powder bed fusion (LPBF) process because of changes in laser incidence angle and misalignment between the build plate and the laser focus plane. This issue is particularly relevant in large-scale LPBF systems where the laser beam needs to scan a large build area. However, most LPBF modeling studies assume vertical laser radiation. The heat transfer, melt pool, and solidification evolution due to the laser shape variation have not been well addressed and quantified. In the present study, the temperature distribution, melt pool geometry and flow dynamics are captured via numerical modelling, and the grain morphology is characterized under various laser incidence angles. The results show that the melt pool depth becomes shallower, and the width is near the beam size as the laser beam becomes more elongated. The beam shape variation can affect the liquid flow pattern with increasing incidence angle, resulting in a larger vortex at the front of the melt pool and a smaller vortex at the rear of the melt pool. The thermal gradient increases and the solidification rate decreases as the laser incident angle becomes larger. The present study enhances the understanding of multi-physics in the LPBF process

    Evolution Characteristics of Electric Field-Related Properties in Polymorphic Piezoceramics with Temperature-Impelled Phase Transition

    No full text
    In this work, to systematically investigate the evolution characteristics of electrical properties in polymorphic piezoceramics, the Ba(Ti0.92Zr0.08)O3 ceramics are selected as a paradigm that possesses all the general phase structures above room temperature. It is found that the evolution of electrical properties with temperature change can be divided into three stages based on phase structure transforming: high ferroelectric and stable strain properties at R and R-O, high ferroelectric and enhanced strain/converse piezoelectric properties at O, O-T, and T phase, and the rapidly decreased ferroelectric and strain properties in T-C and C phase. However, the ferroelectric and strain properties all increase with rising electric field and their evolution can be divided into two parts based on phase structures. The high property and slow increase rate are present at R, R-O, O, and O-T, while the poor property but a high increase rate is present around T-C. Similar results can be found in the evolution of electrostrictive property. Finally, the highest d33* of ~1240 pm/V and Q33 of ~0.053 m4/C2 are obtained at O-T due to the high ferroelectricity but easy domain switching. This work affords important guidance for the property optimization of polymorphic piezoceramics
    • …
    corecore