121 research outputs found

    Application of bioabsorbable screw fixation for anterior cervical decompression and bone grafting

    Get PDF
    OBJECTIVES: To examine the application of bioabsorbable screws for anterior cervical decompression and bone grafting fixation and to study their clinical effects in the treatment of cervical spondylosis. METHODS: From March 2007 to September 2012, 56 patients, 36 males and 20 females (38-79 years old, average 58.3±9.47 years), underwent a novel operation. Grafts were fixed by bioabsorbable screws (PLLA, 2.7 mm in diameter) after anterior decompression. The bioabsorbable screws were inserted from the midline of the graft bone to the bone surface of the upper and lower vertebrae at 45 degree angles. Patients were evaluated post-operatively to observe the improvement of symptoms and evaluate the fusion of the bone. The Japanese Orthopaedic Association (JOA) score was used to evaluate the recovery of neurological functions. RESULTS: All screws were successfully inserted, with no broken screws. The rate of symptom improvement was 87.5%. All of the grafts fused well with no extrusion. The average time for graft fusion was 3.8±0.55 months (range 3-5 months). Three-dimensional reconstruction of CT scans demonstrated that the grafts fused with adjacent vertebrae well and that the screws were absorbed as predicted. The MRI findings showed that the cerebrospinal fluid was unobstructed. No obvious complications appeared in any of the follow-up evaluations. CONCLUSIONS: Cervical spondylosis with one- or two-level involvement can be effectively treated by anterior decompression and bone grafting with bioabsorbable screw fixation. This operative method is safe and can avoid the complications induced by metal implants

    Curved water flow characteristics and its influence on navigation

    Get PDF
    The ship movement is mainly affected by the circulation current in curve channel. In this paper, the curve circulation is taken as the research object, 3D model is established and scientific numerical simulation is carried out. In order to study and analyze the difference, three curve models with different bending degrees are established in this simulation. Finally, according to the simulation results, the measures for safe navigation are proposed

    Unsupervised Multi-document Summarization with Holistic Inference

    Full text link
    Multi-document summarization aims to obtain core information from a collection of documents written on the same topic. This paper proposes a new holistic framework for unsupervised multi-document extractive summarization. Our method incorporates the holistic beam search inference method associated with the holistic measurements, named Subset Representative Index (SRI). SRI balances the importance and diversity of a subset of sentences from the source documents and can be calculated in unsupervised and adaptive manners. To demonstrate the effectiveness of our method, we conduct extensive experiments on both small and large-scale multi-document summarization datasets under both unsupervised and adaptive settings. The proposed method outperforms strong baselines by a significant margin, as indicated by the resulting ROUGE scores and diversity measures. Our findings also suggest that diversity is essential for improving multi-document summary performance.Comment: Findings of IJCNLP-AACL 202

    Artificial disc and vertebra system: a novel motion preservation device for cervical spinal disease after vertebral corpectomy

    Get PDF
    OBJECTIVE: To determine the range of motion and stability of the human cadaveric cervical spine after the implantation of a novel artificial disc and vertebra system by comparing an intact group and a fusion group. METHODS: Biomechanical tests were conducted on 18 human cadaveric cervical specimens. The range of motion and the stability index range of motion were measured to study the function and stability of the artificial disc and vertebra system of the intact group compared with the fusion group. RESULTS: In all cases, the artificial disc and vertebra system maintained intervertebral motion and reestablished vertebral height at the operative level. After its implantation, there was no significant difference in the range of motion (ROM) of C3-7 in all directions in the non-fusion group compared with the intact group (p>;0.05), but significant differences were detected in flexion, extension and axial rotation compared with the fusion group (

    Clinical comparison between a percutaneous hydraulic pressure delivery system and balloon tamp system using high-viscosity cement for the treatment of osteoporotic vertebral compression fractures

    Get PDF
    OBJECTIVES: Osteoporotic vertebral compression fractures (OVCFs) affect the elderly population, especially postmenopausal women. Percutaneous kyphoplasty is designed to treat painful vertebral compression fractures for which conservative therapy has been unsuccessful. High-viscosity cement can be injected by either a hydraulic pressure delivery system (HPDS) or a balloon tamp system (BTS). Therefore, the purpose of this study was to compare the safety and clinical outcomes of these two systems. METHODS: A random, multicenter, prospective study was performed. Clinical and radiological assessments were carried out, including assessments of general surgery information, visual analog scale, quality of life, cement leakage, and height and angle restoration. RESULTS: Using either the HPDS or BTS to inject high-viscosity cement effectively relieved pain and improved the patients’ quality of life immediately, and these effects lasted at least two years. The HPDS using high-viscosity cement reduced cost, surgery time, and radiation exposure and showed similar clinical results to those of the BTS. In addition, the leakage rate and the incidence of adjacent vertebral fractures after the HPDS treatment were reduced compared with those after treatment using the classic vertebroplasty devices. However, the BTS had better height and angle restoration abilities. CONCLUSIONS: The percutaneous HPDS with high-viscosity cement has similar clinical outcomes to those of traditional procedures in the treatment of vertebral fractures in the elderly. The HPDS with high-viscosity cement is better than the BTS in the treatment of mild and moderate OVCFs and could be an alternative method for the treatment of severe OVCFs

    Prevotella copri alleviates sarcopenia via attenuating muscle mass loss and function decline

    Get PDF
    Background: The gut microbiome and fecal metabolites have been found to influence sarcopenia, but whether there are potential bacteria that can alleviate sarcopenia has been under-investigated, and the molecular mechanism remains unclear.Methods: To investigate the relationships between the gut microbiome, fecal metabolites and sarcopenia, subjects were selected from observational multi-ethnic study conducted in Western China. Sarcopenia was diagnosed according to the criteria of the Asian Working Group for Sarcopenia 2014. The gut microbiome was profiled by shotgun metagenomic sequencing. Untargeted metabolomic analysis was performed to analyse the differences in fecal metabolites. We investigated bacterium with the greatest relative abundance difference between healthy individuals and sarcopenia patients, and the differences in metabolites associated with the bacteria, to verify its effects on muscle mass and function in a mouse model.Results: The study included 283 participants (68.90% females, mean age: 66.66 years old) with and without sarcopenia (141 and 142 participants, respectively) and from the Han (98 participants), Zang (88 participants) and Qiang (97 participants) ethnic groups. This showed an overall reduction (15.03% vs. 20.77%, P = 0.01) of Prevotella copri between the sarcopenia and non-sarcopenia subjects across the three ethnic groups. Functional characterization of the differential bacteria showed enrichment (odds ratio = 15.97, P = 0.0068) in branched chain amino acid (BCAA) metabolism in non-sarcopenia group. A total of 13 BCAA and their derivatives have relatively low levels in sarcopenia. In the in vivo experiment, we found that the blood BCAA level was higher in the mice gavaged with live P. copri (LPC) (P &lt; 0.001). The LPC mice had significantly longer wire and grid hanging time (P &lt; 0.02), longer time on rotor (P = 0.0001) and larger grip strength (P &lt; 0.0001), indicating better muscle function. The weight of gastrocnemius mass and rectus femoris mass (P &lt; 0.05) was higher in LPC mice. The micro-computed tomography showed a larger leg area (P = 0.0031), and a small animal analyser showed a higher lean mass ratio in LPC mice (P = 0.0157), indicating higher muscle mass.Conclusions: The results indicated that there were lower levels of both P. copri and BCAA in sarcopenia individuals. In vivo experiments, gavage with LPC could attenuate muscle mass and function decline, indicating alleviating sarcopenia. This suggested that P. copri may play a therapeutic potential role in the management of sarcopenia.</p

    Prevotella copri alleviates sarcopenia via attenuating muscle mass loss and function decline

    Get PDF
    Background: The gut microbiome and fecal metabolites have been found to influence sarcopenia, but whether there are potential bacteria that can alleviate sarcopenia has been under-investigated, and the molecular mechanism remains unclear.Methods: To investigate the relationships between the gut microbiome, fecal metabolites and sarcopenia, subjects were selected from observational multi-ethnic study conducted in Western China. Sarcopenia was diagnosed according to the criteria of the Asian Working Group for Sarcopenia 2014. The gut microbiome was profiled by shotgun metagenomic sequencing. Untargeted metabolomic analysis was performed to analyse the differences in fecal metabolites. We investigated bacterium with the greatest relative abundance difference between healthy individuals and sarcopenia patients, and the differences in metabolites associated with the bacteria, to verify its effects on muscle mass and function in a mouse model.Results: The study included 283 participants (68.90% females, mean age: 66.66 years old) with and without sarcopenia (141 and 142 participants, respectively) and from the Han (98 participants), Zang (88 participants) and Qiang (97 participants) ethnic groups. This showed an overall reduction (15.03% vs. 20.77%, P = 0.01) of Prevotella copri between the sarcopenia and non-sarcopenia subjects across the three ethnic groups. Functional characterization of the differential bacteria showed enrichment (odds ratio = 15.97, P = 0.0068) in branched chain amino acid (BCAA) metabolism in non-sarcopenia group. A total of 13 BCAA and their derivatives have relatively low levels in sarcopenia. In the in vivo experiment, we found that the blood BCAA level was higher in the mice gavaged with live P. copri (LPC) (P &lt; 0.001). The LPC mice had significantly longer wire and grid hanging time (P &lt; 0.02), longer time on rotor (P = 0.0001) and larger grip strength (P &lt; 0.0001), indicating better muscle function. The weight of gastrocnemius mass and rectus femoris mass (P &lt; 0.05) was higher in LPC mice. The micro-computed tomography showed a larger leg area (P = 0.0031), and a small animal analyser showed a higher lean mass ratio in LPC mice (P = 0.0157), indicating higher muscle mass.Conclusions: The results indicated that there were lower levels of both P. copri and BCAA in sarcopenia individuals. In vivo experiments, gavage with LPC could attenuate muscle mass and function decline, indicating alleviating sarcopenia. This suggested that P. copri may play a therapeutic potential role in the management of sarcopenia.</p

    Prevotella copri alleviates sarcopenia via attenuating muscle mass loss and function decline

    Get PDF
    Background: The gut microbiome and fecal metabolites have been found to influence sarcopenia, but whether there are potential bacteria that can alleviate sarcopenia has been under-investigated, and the molecular mechanism remains unclear.Methods: To investigate the relationships between the gut microbiome, fecal metabolites and sarcopenia, subjects were selected from observational multi-ethnic study conducted in Western China. Sarcopenia was diagnosed according to the criteria of the Asian Working Group for Sarcopenia 2014. The gut microbiome was profiled by shotgun metagenomic sequencing. Untargeted metabolomic analysis was performed to analyse the differences in fecal metabolites. We investigated bacterium with the greatest relative abundance difference between healthy individuals and sarcopenia patients, and the differences in metabolites associated with the bacteria, to verify its effects on muscle mass and function in a mouse model.Results: The study included 283 participants (68.90% females, mean age: 66.66 years old) with and without sarcopenia (141 and 142 participants, respectively) and from the Han (98 participants), Zang (88 participants) and Qiang (97 participants) ethnic groups. This showed an overall reduction (15.03% vs. 20.77%, P = 0.01) of Prevotella copri between the sarcopenia and non-sarcopenia subjects across the three ethnic groups. Functional characterization of the differential bacteria showed enrichment (odds ratio = 15.97, P = 0.0068) in branched chain amino acid (BCAA) metabolism in non-sarcopenia group. A total of 13 BCAA and their derivatives have relatively low levels in sarcopenia. In the in vivo experiment, we found that the blood BCAA level was higher in the mice gavaged with live P. copri (LPC) (P &lt; 0.001). The LPC mice had significantly longer wire and grid hanging time (P &lt; 0.02), longer time on rotor (P = 0.0001) and larger grip strength (P &lt; 0.0001), indicating better muscle function. The weight of gastrocnemius mass and rectus femoris mass (P &lt; 0.05) was higher in LPC mice. The micro-computed tomography showed a larger leg area (P = 0.0031), and a small animal analyser showed a higher lean mass ratio in LPC mice (P = 0.0157), indicating higher muscle mass.Conclusions: The results indicated that there were lower levels of both P. copri and BCAA in sarcopenia individuals. In vivo experiments, gavage with LPC could attenuate muscle mass and function decline, indicating alleviating sarcopenia. This suggested that P. copri may play a therapeutic potential role in the management of sarcopenia.</p

    Prevotella copri alleviates sarcopenia via attenuating muscle mass loss and function decline

    Get PDF
    Background: The gut microbiome and fecal metabolites have been found to influence sarcopenia, but whether there are potential bacteria that can alleviate sarcopenia has been under-investigated, and the molecular mechanism remains unclear.Methods: To investigate the relationships between the gut microbiome, fecal metabolites and sarcopenia, subjects were selected from observational multi-ethnic study conducted in Western China. Sarcopenia was diagnosed according to the criteria of the Asian Working Group for Sarcopenia 2014. The gut microbiome was profiled by shotgun metagenomic sequencing. Untargeted metabolomic analysis was performed to analyse the differences in fecal metabolites. We investigated bacterium with the greatest relative abundance difference between healthy individuals and sarcopenia patients, and the differences in metabolites associated with the bacteria, to verify its effects on muscle mass and function in a mouse model.Results: The study included 283 participants (68.90% females, mean age: 66.66 years old) with and without sarcopenia (141 and 142 participants, respectively) and from the Han (98 participants), Zang (88 participants) and Qiang (97 participants) ethnic groups. This showed an overall reduction (15.03% vs. 20.77%, P = 0.01) of Prevotella copri between the sarcopenia and non-sarcopenia subjects across the three ethnic groups. Functional characterization of the differential bacteria showed enrichment (odds ratio = 15.97, P = 0.0068) in branched chain amino acid (BCAA) metabolism in non-sarcopenia group. A total of 13 BCAA and their derivatives have relatively low levels in sarcopenia. In the in vivo experiment, we found that the blood BCAA level was higher in the mice gavaged with live P. copri (LPC) (P &lt; 0.001). The LPC mice had significantly longer wire and grid hanging time (P &lt; 0.02), longer time on rotor (P = 0.0001) and larger grip strength (P &lt; 0.0001), indicating better muscle function. The weight of gastrocnemius mass and rectus femoris mass (P &lt; 0.05) was higher in LPC mice. The micro-computed tomography showed a larger leg area (P = 0.0031), and a small animal analyser showed a higher lean mass ratio in LPC mice (P = 0.0157), indicating higher muscle mass.Conclusions: The results indicated that there were lower levels of both P. copri and BCAA in sarcopenia individuals. In vivo experiments, gavage with LPC could attenuate muscle mass and function decline, indicating alleviating sarcopenia. This suggested that P. copri may play a therapeutic potential role in the management of sarcopenia.</p

    Prevotella copri alleviates sarcopenia via attenuating muscle mass loss and function decline

    Get PDF
    Background: The gut microbiome and fecal metabolites have been found to influence sarcopenia, but whether there are potential bacteria that can alleviate sarcopenia has been under-investigated, and the molecular mechanism remains unclear.Methods: To investigate the relationships between the gut microbiome, fecal metabolites and sarcopenia, subjects were selected from observational multi-ethnic study conducted in Western China. Sarcopenia was diagnosed according to the criteria of the Asian Working Group for Sarcopenia 2014. The gut microbiome was profiled by shotgun metagenomic sequencing. Untargeted metabolomic analysis was performed to analyse the differences in fecal metabolites. We investigated bacterium with the greatest relative abundance difference between healthy individuals and sarcopenia patients, and the differences in metabolites associated with the bacteria, to verify its effects on muscle mass and function in a mouse model.Results: The study included 283 participants (68.90% females, mean age: 66.66 years old) with and without sarcopenia (141 and 142 participants, respectively) and from the Han (98 participants), Zang (88 participants) and Qiang (97 participants) ethnic groups. This showed an overall reduction (15.03% vs. 20.77%, P = 0.01) of Prevotella copri between the sarcopenia and non-sarcopenia subjects across the three ethnic groups. Functional characterization of the differential bacteria showed enrichment (odds ratio = 15.97, P = 0.0068) in branched chain amino acid (BCAA) metabolism in non-sarcopenia group. A total of 13 BCAA and their derivatives have relatively low levels in sarcopenia. In the in vivo experiment, we found that the blood BCAA level was higher in the mice gavaged with live P. copri (LPC) (P &lt; 0.001). The LPC mice had significantly longer wire and grid hanging time (P &lt; 0.02), longer time on rotor (P = 0.0001) and larger grip strength (P &lt; 0.0001), indicating better muscle function. The weight of gastrocnemius mass and rectus femoris mass (P &lt; 0.05) was higher in LPC mice. The micro-computed tomography showed a larger leg area (P = 0.0031), and a small animal analyser showed a higher lean mass ratio in LPC mice (P = 0.0157), indicating higher muscle mass.Conclusions: The results indicated that there were lower levels of both P. copri and BCAA in sarcopenia individuals. In vivo experiments, gavage with LPC could attenuate muscle mass and function decline, indicating alleviating sarcopenia. This suggested that P. copri may play a therapeutic potential role in the management of sarcopenia.</p
    corecore