81 research outputs found

    An Asymptotic Analysis of Minibatch-Based Momentum Methods for Linear Regression Models

    Full text link
    Momentum methods have been shown to accelerate the convergence of the standard gradient descent algorithm in practice and theory. In particular, the minibatch-based gradient descent methods with momentum (MGDM) are widely used to solve large-scale optimization problems with massive datasets. Despite the success of the MGDM methods in practice, their theoretical properties are still underexplored. To this end, we investigate the theoretical properties of MGDM methods based on the linear regression models. We first study the numerical convergence properties of the MGDM algorithm and further provide the theoretically optimal tuning parameters specification to achieve faster convergence rate. In addition, we explore the relationship between the statistical properties of the resulting MGDM estimator and the tuning parameters. Based on these theoretical findings, we give the conditions for the resulting estimator to achieve the optimal statistical efficiency. Finally, extensive numerical experiments are conducted to verify our theoretical results.Comment: 45 pages, 5 figure

    PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

    Get PDF
    The Depth-aware Video Panoptic Segmentation (DVPS) is a new challenging vision problem that aims to predict panoptic segmentation and depth in a video simultaneously. The previous work solves this task by extending the existing panoptic segmentation method with an extra dense depth prediction and instance tracking head. However, the relationship between the depth and panoptic segmentation is not well explored -- simply combining existing methods leads to competition and needs carefully weight balancing. In this paper, we present PolyphonicFormer, a vision transformer to unify these sub-tasks under the DVPS task and lead to more robust results. Our principal insight is that the depth can be harmonized with the panoptic segmentation with our proposed new paradigm of predicting instance level depth maps with object queries. Then the relationship between the two tasks via query-based learning is explored. From the experiments, we demonstrate the benefits of our design from both depth estimation and panoptic segmentation aspects. Since each thing query also encodes the instance-wise information, it is natural to perform tracking directly with appearance learning. Our method achieves state-of-the-art results on two DVPS datasets (Semantic KITTI, Cityscapes), and ranks 1st on the ICCV-2021 BMTT Challenge video + depth track. Code is available at https://github.com/HarborYuan/PolyphonicFormer .Comment: Accepted by ECCV 202

    Multi-Task Learning with Multi-Query Transformer for Dense Prediction

    Full text link
    Previous multi-task dense prediction studies developed complex pipelines such as multi-modal distillations in multiple stages or searching for task relational contexts for each task. The core insight beyond these methods is to maximize the mutual effects between each task. Inspired by the recent query-based Transformers, we propose a simpler pipeline named Multi-Query Transformer (MQTransformer) that is equipped with multiple queries from different tasks to facilitate the reasoning among multiple tasks and simplify the cross task pipeline. Instead of modeling the dense per-pixel context among different tasks, we seek a task-specific proxy to perform cross-task reasoning via multiple queries where each query encodes the task-related context. The MQTransformer is composed of three key components: shared encoder, cross task attention and shared decoder. We first model each task with a task-relevant and scale-aware query, and then both the image feature output by the feature extractor and the task-relevant query feature are fed into the shared encoder, thus encoding the query feature from the image feature. Secondly, we design a cross task attention module to reason the dependencies among multiple tasks and feature scales from two perspectives including different tasks of the same scale and different scales of the same task. Then we use a shared decoder to gradually refine the image features with the reasoned query features from different tasks. Extensive experiment results on two dense prediction datasets (NYUD-v2 and PASCAL-Context) show that the proposed method is an effective approach and achieves the state-of-the-art result

    Transformer-Based Visual Segmentation: A Survey

    Full text link
    Visual segmentation seeks to partition images, video frames, or point clouds into multiple segments or groups. This technique has numerous real-world applications, such as autonomous driving, image editing, robot sensing, and medical analysis. Over the past decade, deep learning-based methods have made remarkable strides in this area. Recently, transformers, a type of neural network based on self-attention originally designed for natural language processing, have considerably surpassed previous convolutional or recurrent approaches in various vision processing tasks. Specifically, vision transformers offer robust, unified, and even simpler solutions for various segmentation tasks. This survey provides a thorough overview of transformer-based visual segmentation, summarizing recent advancements. We first review the background, encompassing problem definitions, datasets, and prior convolutional methods. Next, we summarize a meta-architecture that unifies all recent transformer-based approaches. Based on this meta-architecture, we examine various method designs, including modifications to the meta-architecture and associated applications. We also present several closely related settings, including 3D point cloud segmentation, foundation model tuning, domain-aware segmentation, efficient segmentation, and medical segmentation. Additionally, we compile and re-evaluate the reviewed methods on several well-established datasets. Finally, we identify open challenges in this field and propose directions for future research. The project page can be found at https://github.com/lxtGH/Awesome-Segmenation-With-Transformer. We will also continually monitor developments in this rapidly evolving field.Comment: Work in progress. Github: https://github.com/lxtGH/Awesome-Segmenation-With-Transforme

    A well-preserved ‘placoderm’ (stem-group Gnathostomata) upper jaw from the Early Devonian of Mongolia clarifies jaw evolution

    Get PDF
    The origin of jaws and teeth remains contentious in vertebrate evolution. ‘Placoderms’ (Silurian-Devonian armoured jawed fishes) are central to debates on the origins of these anatomical structures. ‘Acanthothoracids’ are generally considered the most primitive ‘placoderms’. However, they are so far known mainly from disarticulated skeletal elements that are typically incomplete. The structure of the jaws—particularly the jaw hinge—is poorly known, leaving open questions about their jaw function and comparison with other placoderms and modern gnathostomes. Here we describe a near-complete ‘acanthothoracid’ upper jaw, allowing us to reconstruct the likely orientation and angle of the bite and compare its morphology with that of other known ‘placoderm’ groups. We clarify that the bite position is located on the upper jaw cartilage rather than on the dermal cheek and thus show that there is a highly conserved bite morphology among most groups of ‘placoderms’, regardless of their overall cranial geometry. Incorporation of the dermal skeleton appears to provide a sound biomechanical basis for jaw origins. It appears that ‘acanthothoracid’ dentitions were fundamentally similar in location to that of arthrodire ‘placoderms’, rather than resembling bony fishes. Irrespective of current phylogenetic uncertainty, the new data here resolve the likely general condition for ‘placoderms’ as a whole, and as such, ancestral morphology of known jawed vertebrates

    Tube-Link: A Flexible Cross Tube Framework for Universal Video Segmentation

    Get PDF
    Video segmentation aims to segment and track every pixel in diverse scenarios accurately. In this paper, we present Tube-Link, a versatile framework that addresses multiple core tasks of video segmentation with a unified architecture. Our framework is a near-online approach that takes a short subclip as input and outputs the corresponding spatial-temporal tube masks. To enhance the modeling of cross-tube relationships, we propose an effective way to perform tube-level linking via attention along the queries. In addition, we introduce temporal contrastive learning to instance-wise discriminative features for tube-level association. Our approach offers flexibility and efficiency for both short and long video inputs, as the length of each subclip can be varied according to the needs of datasets or scenarios. Tube-Link outperforms existing specialized architectures by a significant margin on five video segmentation datasets. Specifically, it achieves almost 13% relative improvements on VIPSeg and 4% improvements on KITTI-STEP over the strong baseline Video K-Net. When using a ResNet50 backbone on Youtube-VIS2019 and 2021, Tube-Link boosts IDOL by 3% and 4%, respectively. Code is available at https://github.com/lxtGH/Tube-Link

    Towards Open Vocabulary Learning: A Survey

    Full text link
    In the field of visual scene understanding, deep neural networks have made impressive advancements in various core tasks like segmentation, tracking, and detection. However, most approaches operate on the close-set assumption, meaning that the model can only identify pre-defined categories that are present in the training set. Recently, open vocabulary settings were proposed due to the rapid progress of vision language pre-training. These new approaches seek to locate and recognize categories beyond the annotated label space. The open vocabulary approach is more general, practical, and effective compared to weakly supervised and zero-shot settings. This paper provides a thorough review of open vocabulary learning, summarizing and analyzing recent developments in the field. In particular, we begin by comparing it to related concepts such as zero-shot learning, open-set recognition, and out-of-distribution detection. Then, we review several closely related tasks in the case of segmentation and detection, including long-tail problems, few-shot, and zero-shot settings. For the method survey, we first present the basic knowledge of detection and segmentation in close-set as the preliminary knowledge. Next, we examine various scenarios in which open vocabulary learning is used, identifying common design elements and core ideas. Then, we compare the recent detection and segmentation approaches in commonly used datasets and benchmarks. Finally, we conclude with insights, issues, and discussions regarding future research directions. To our knowledge, this is the first comprehensive literature review of open vocabulary learning. We keep tracing related works at https://github.com/jianzongwu/Awesome-Open-Vocabulary.Comment: Project page at https://github.com/jianzongwu/Awesome-Open-Vocabular
    • …
    corecore