580 research outputs found

    Countable dense homogeneity and the Baire property

    Get PDF
    AbstractConditions are given that ensure that certain open subsets of countable dense homogeneous spaces are countable dense homogeneous. Also, results are given which pertain to the questions: Is every countable dense homogeneous metric space Baire? Is every one completely metrizable

    Machine learning of plasma metabolome identifies biomarker panels for metabolic syndrome: Findings from the China Suboptimal Health Cohort

    Get PDF
    Background: Metabolic syndrome (MetS) has been proposed as a clinically identifiable high-risk state for the prediction and prevention of cardiovascular diseases and type 2 diabetes mellitus. As a promising “omics” technology, metabolomics provides an innovative strategy to gain a deeper understanding of the pathophysiology of MetS. The study aimed to systematically investigate the metabolic alterations in MetS and identify biomarker panels for the identification of MetS using machine learning methods. Methods: Nuclear magnetic resonance-based untargeted metabolomics analysis was performed on 1011 plasma samples (205 MetS patients and 806 healthy controls). Univariate and multivariate analyses were applied to identify metabolic biomarkers for MetS. Metabolic pathway enrichment analysis was performed to reveal the disturbed metabolic pathways related to MetS. Four machine learning algorithms, including support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), and logistic regression were used to build diagnostic models for MetS. Results: Thirteen significantly differential metabolites were identified and pathway enrichment revealed that arginine, proline, and glutathione metabolism are disturbed metabolic pathways related to MetS. The protein-metabolite-disease interaction network identified 38 proteins and 23 diseases are associated with 10 MetS-related metabolites. The areas under the receiver operating characteristic curve of the SVM, RF, KNN, and logistic regression models based on metabolic biomarkers were 0.887, 0.993, 0.914, and 0.755, respectively. Conclusions: The plasma metabolome provides a promising resource of biomarkers for the predictive diagnosis and targeted prevention of MetS. Alterations in amino acid metabolism play significant roles in the pathophysiology of MetS. The biomarker panels and metabolic pathways could be used as preventive targets in dealing with cardiometabolic diseases related to MetS

    Reinforcement Learning-based Non-Autoregressive Solver for Traveling Salesman Problems

    Full text link
    The Traveling Salesman Problem (TSP) is a well-known combinatorial optimization problem with broad real-world applications. Recently, neural networks have gained popularity in this research area because they provide strong heuristic solutions to TSPs. Compared to autoregressive neural approaches, non-autoregressive (NAR) networks exploit the inference parallelism to elevate inference speed but suffer from comparatively low solution quality. In this paper, we propose a novel NAR model named NAR4TSP, which incorporates a specially designed architecture and an enhanced reinforcement learning strategy. To the best of our knowledge, NAR4TSP is the first TSP solver that successfully combines RL and NAR networks. The key lies in the incorporation of NAR network output decoding into the training process. NAR4TSP efficiently represents TSP encoded information as rewards and seamlessly integrates it into reinforcement learning strategies, while maintaining consistent TSP sequence constraints during both training and testing phases. Experimental results on both synthetic and real-world TSP instances demonstrate that NAR4TSP outperforms four state-of-the-art models in terms of solution quality, inference speed, and generalization to unseen scenarios.Comment: 14 pages, 5 figure

    Maskless Generation of Single Silicon Vacancy Arrays in Silicon Carbide by a Focused He+ Ion Beam

    Full text link
    Precise generation of spin defects in solid-state systems is essential for nanostructure fluorescence enhancement. We investigated a method for creating single silicon vacancy defect arrays in silicon carbide using a helium-ion microscope. Maskless and targeted generation can be realized by precisely controlling the focused He+ ion beam with an implantation uncertainty of 60 nm. The generated silicon vacancies were identified by measuring the optically detected magnetic resonance spectrum and room temperature photoluminescence spectrum. We systematically studied the effects of the implantation ion dose on the generated silicon vacancies. After optimization, a conversion yield of ~ 6.95 % and a generation rate for a single silicon vacancy of ~ 35 % were realized. This work paves the way for the integration and engineering of color centers to photonic structures and the application of quantum sensing based on spin defects in silicon carbide

    High performance dual-wave mode flexible surface acoustic wave resonators for UV light sensing

    Get PDF
    Dual-mode flexible ZnO/polyimide surface acoustic wave (SAW)-based ultraviolet (UV) light sensors were fabricated and their performance was investigated. UV light sensing measurements showed that the responses of the dual wave modes of the sensors increase with the increase of light intensity and the frequency changes linearly with the change of light intensity. Under a 4.5 mW cm−2 UV light illumination, the resonant frequency of the Rayleigh wave decreased up to ~43 kHz, while that of the Lamb wave was approximately 76 kHz. The UV light sensitivities for the two resonant modes are 111.3 and 55.8 ppm (mW cm−2)–1, respectively. The resonant frequency, phase angle and amplitude of the two resonant modes exhibited a good repeatability in responding to cyclic change of the UV light, and an excellent stability up to a long duration of UV light exposure. The dual-mode flexible SAW resonators are simple in structure, more accurate in detection, and can be fabricated at low cost are, therefore, very promising for application in flexible sensors and electronics

    Experimentally Detecting Quantized Zak Phases without Chiral Symmetry in Photonic Lattices

    Get PDF
    Symmetries play a major role in identifying topological phases of matter and in establishing a direct connection between protected edge states and topological bulk invariants via the bulk-boundary correspondence. One-dimensional lattices are deemed to be protected by chiral symmetry, exhibiting quantized Zak phases and protected edge states, but not for all cases. Here, we experimentally realize an extended Su-Schrieffer-Heeger model with broken chiral symmetry by engineering one-dimensional zigzag photonic lattices, where the long-range hopping breaks chiral symmetry but ensures the existence of inversion symmetry. By the averaged mean displacement method, we detect topological invariants directly in the bulk through the continuous-time quantum walk of photons. Our results demonstrate that inversion symmetry protects the quantized Zak phase but edge states can disappear in the topological nontrivial phase, thus breaking the conventional bulk-boundary correspondence. Our photonic lattice provides a useful platform to study the interplay among topological phases, symmetries, and the bulk-boundary correspondence.This research is supported by the National Key R&D Program of China (2019YFA0308700, 2019YFA0706302, 2017YFA0303700), the National Natural Science Foundation of China (NSFC) (11904229, 11761141014, 61734005, 11690033), the Science and Technology Commission of Shanghai Municipality (STCSM) (20JC1416300, 2019SHZDZX01), the Shanghai Municipal Education Commission (SMEC) (2017-01-07-00-02-E00049). X.-M. J. acknowledges additional support from a Shanghai talent program and support from the Zhiyuan Innovative Research Center of Shanghai Jiao Tong University

    Case Report: A Novel GJB2 Missense Variant Inherited From the Low-Level Mosaic Mother in a Chinese Female With Palmoplantar Keratoderma With Deafness

    Get PDF
    Dominant variants in the gap junction beta-2 (GJB2) gene may lead to various degrees of syndromic hearing loss (SHL) which is manifest as sensorineural hearing impairment and hyperproliferative epidermal disorders, including palmoplantar keratoderma with deafness (PPKDFN). So far, only a few GJB2 dominant variants causing PPKDFN have been discovered. Through the whole-exome sequencing (WES), a Chinese female patient with severe palmoplantar hyperkeratosis and delayed-onset hearing loss has been identified. She had a novel heterozygous variant, c.224G>C (p.R75P), in the GJB2 gene, which was unreported previously. The proband’s mother who had a mild phenotype was suggested the possibility of mosaicism by WES (∼120×), and the ultra-deep targeted sequencing (∼20,000×) was used for detecting low-level mosaic variants which provided accurate recurrence-risk estimates and genetic counseling. In addition, the analysis of protein structure indicated that the structural stability and permeability of the connexin 26 (Cx26) gap junction channel may be disrupted by the p.R75P variant. Through retrospective analysis, it is detected that the junction of extracellular region-1 (EC1) and transmembrane region-2 (TM2) is a variant hotspot for PPKDFN, such as p.R75. Our report reflects the important and effective diagnostic role of WES in PPKDFN and low-level mosaicism, expands the spectrum of the GJB2 variant, and furthermore provides strong proof about the relevance between the p.R75P variant in GJB2 and PPKDFN
    corecore