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Abstract

Fitzpatrick Jr, B. and Zhou H., Countable dense homogeneity and the Baire property, Topology
and-its Applications 43 (1992) 1-14.

Conditions are given that ensure that certain open subsets of countable dense homogeneous spaces
are countable dense homogeneous. Also, results are given which pertain to the questions: Is every
countable dense homogeneous metric space Baire? Is every one completely metrizable?
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1. Introduction

All spaces under consideration are assumed to be T;. If X is a space, then H(X)
denotes the group of all autohomeomorphisms on X.

Even before Sierpinski [17] had introduced the notion of a hon.cgeneous space,
Frechet [14] and Brouwer [7] had observed that Euclidean n-dimensional space
has the property that if A and B are two countable dense sets in R", then some h
in H(R") takes A onto B; they needed this theorem in their development of
dimension theory. In 1962, Fort [13] proved that the Hilbert cube has the same
property. In 1972, Bennett [6] isolated this property. He called a space X countable
dense homogeneous (CDH) provided that X is separable and that if A and B are
two countable dense subsets of X, then there is an he H(X) such that h(A)= 8.
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Theerem 1.1 (Bennett). Every first countable, connected, CDH space is homogeneous.

The condition of first countability was later removed independently by Cook and
Ford. Their work was not published; a theorem from which theirs follows has
recently appeared [10]. That the connectedness condition cannot be removed is
readily seen by considering the disjoint union of a 1-sphere and a 2-sphere. Noting
that each component of this example is CDH and, therefore, homogeneous led to
the observation that every component of a CDH space is CDH and is, if non-
degenerate, open in the space. The same arguments will work for quasi-components,
but in fact in CDH spaces the quasi-components are precisely the components, so

this gi'v'es nothing new. Section 2 of this paper discusses the hereditary character of
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Theorem 1.2 (Bennett). Every locally compact, separable, metric, strongly locally

homogeneous space is CDH.

Recall that a space X is strongly locally homogeneous provided that there is a
basis B for the topology of X such that if { p, g} = U € B, then there is an he H(X)
such that A(p)=gq and h(x)=x for all xe X\U. That local compactness can be
replaced by completeness in this theorem was shown by Fietcher and McCoy [12]
and by Anderson, Curtis and van Mill [3). Van Mill [20] demonstrated that the
condition cannot be further relaxed; he gave an example of a connected, locally
connected, Baire subset of the plane that is -trongly locally homogeneous but not
CDH. We have provided [11] an example of a connected and locally connected
Baire Hausdorff space which is CDH but not strongly locally homogeneous. In [21],
Watson and Simon constructed such an example which is also regular. The question
as to whether there is an example which is metrizable remains open. All previously
known examples of CDH spaces seem 10 be Baire, which leads us to examine in
Sections 3 and 4 the relation between CDH and the Baire property.

Section 4 is devoted to a technique for constructing CDH spaces, thereby providing
pertinent examples for the questions menticned.

2. Open subsets of CDH spaces and a decomposition theorem

In 1978, Ungar [19] established that a continuum other than S' is CDH if and
only if it is strongly n-homogeneous for all positive integers n. It was stated as
corollary to the main results that every open dense subset of a CDH continuum is
itself CDH. There appears to be a gap in the argument for this corollary, and we
regard the question as still open.' For 1-dimensional continua the statement does
hold. The proof is a straightforward consequence of several known theorems; we
include it here for the sake of completeness.

! We are indebted to J.M.S. White for this observation.
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Theorem 2.1. Every open subset of a 1-dimensional CDH continuum is CDH.

Proof. If X is a CDH continuum, then X is homogeneous [6]; also, X is locally
connected [9]. Anderson showed [2] that a 1-dimensional locally connected
homogeneous continuum must be either the simple closed curve or the Menger
universal curve. He also showed [1] that the Menger curve is strongly locally
homogeneous. Clearly, S’ is, also. It is trivial that open subsets of strongly locally
homogeneous spaces are themselves strongly locally homogeneous. So, if U is an
open subset of a 1-dimensional CDH continuum, then U is a locally compact,
separable, strongly locally homogeneous metric space and is therefore by Bennett’s
Theorem 1.2 cited above, CDH. O

Remark. That not every open dense subset of a 1-dimensional homogeneous con-
tinuum is homogeneous can be easily seen by removing from the dyadic solenoid
two points of the same composant. The resulting subspace has one arc component
that is locally compact and others which are not.

Remark. Our example [11] mentioned in the introduction is a connected, locally
connected, CDH, Baire, Hausdorff space with a dense, open, connected subspace
that is not CDH, not even homogeneous. We do not know of such an example that
is metrizable.

It is known [10] that components of CDH spaces are CDH and are, if nontrivial,
open sets. It is easy to verify that the components of a CDH space are the
quasi-components of the space. The following are further partial results about the
hereditary nature of CDH.

Theorem 2.2. If X is a CDH metric space and U is a locally compact subset of X that
is both open ana closed, then U is CDH.

Proof. Let X = Au B, where A is the union of all nondegenerate components of X
and B = X\A. Since A is the union of sets that are open and closed and CDH, A
is CDH. Since every member of H(X) maps A onto itself, A must have empty
boundary. Therefore, both A and B are open and closed and CDH. Let D be the
union of all degenerate open components of X and E be the union of the rest of
the degenerate components of X. Then D and E are open and closed and CDH.
If U is open and closed in X, then U=(UnA)u(Un D)u(UnE). Since U
contains every component of X that it intersects, U n A is CDH. Clearly, UnD
is CDH. The subspace U n E is locally compact, 0-dimensional, and every point
of U N E is a limit point of U E, and U N E is the union cf a countable discrete
collection of Cantor sets and is therefore CDH. It follows that U is CDH. U
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“orollary. Let X be a locally compact, CDH, metric space. If every dense open set in

Xis H then so is every apen set.
Proof. Let U be open in X. Let Y =X\bdry(U). Then Y is open and dense in X,
so Y is CDH. Then U, as an open and closed subset of the locally compact, CDH
space Y,is CDH. O

Theorem 2.3. If X is a complete, metric CDH, 0-dimensional space, then every open
subset of X is CDH.

Proof. Let A be the set of all isolated points of X; let B be the set of all points of
X\A at which X is locally compact; and iet C = X\(Au B).

It follows that each of A, B, and C is onsn: and clesed in X and CDH. As before,
B is the union of a countable discrete {possibiy empty) coilection of Caaior sets,
and so is every open subset of B. The set C is, if nonempty, a separable, 0-
dimensional, nowhere locally compact, complete metric space and is therefore
homeomorphic to the irrationals, and so is every open subset of C. It follows that

every open subset of X is CDH. [

Corollary. Let X be a complete, 0-diinernsional separable metric space. Then X is CDH
if and only if X is strongly locally homogeneous.

Theorem 2.4. If every CDH continuum is hereditarily CDH with respect to open subsets,
then so is every CDH compact metric space.

Proof. Ii X is a compact, CDH metric space, then X = Au Bu C, where A is empty
or the union of « finite number of nondegenecrate continua, B is finite, and C is
empty or the Cantor set, and each of A, B, and C is open and closed in X. Let U

be open in X. By hypothesis, U n A is CDH. Clearly, Un B and U n C ar¢ CDH.
Thus, UisCDH. O

Remark. Every 1-dimensional CDH compact metric space is hereditarily CDH with
respect to open subsets, by the above argument and by Theorem 2.1.

Remark. The results of this section are, admittedly, fragmentary, indicating that
there is much that remains to be done.

We conclude this section with a decomposition theorem.

Theorem 2.5. If X is CDH, densely homogeneovs (= homogeneous with respect to
o-discrete dense subsets) or strongly locally komogeneous, then X is the union of a
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discrete collection of homogeneous subspaces, each of which is CDH, densely
homogeneous, or sirongiy localiy homogeneous, respectively.

Proof. Partition the space into equivalence classes, where x ~ y if and only if y = h(x)
for some he H(X). We claim that each equivalence class [x] is open. That this is
so in case X is strongly locally homogeneous is immediate. Suppose that there exists
a class € of dense subsets of X such that

(1) if Ce ¢, D= C, and D is dense in X, then De €,

(2) if Ce € and x€ X, then Cu{x}e ¢, and

(3) if Ce € and De ¢, then h(C)= D for some he H(X).

Such is the case provided that X is CDH or densely homogeneous.

Let E be the collection of all equivalence classes which are open. If {J E = X,
then the desired conclusion follows. Suppose, then, that | JE# X. Let X'=
X\(U E). Then X' is invariant under every autochomeomorphism on X, and if
x€ X' then [x]< X', and X' is open and closed in X and has a class €’ of dense
subsets satisfying (1)-(3) abo* >. Thorefore, we may, without loss of generality,
assume that X = X', that is, that no equivalence class in X is open. It is easy to
see that no [x] can contain a nonempty open set. It follows that if Se¢ € and pe X,
then neither SN[ p] nor SN (X\[p]) is dense in X.

The argument on [10, p. 21], repeated word for word, vields a contradiction, so
that |_J E = X, and each equivalence class [ p] is open. Surely, each is homogeneous
and, respectively, CDH, densely homogeneous, or strongly locally homogeneous.
Since E is a covering of X by disjoint open sets, E is discrete, and the proof is
complete. [] '

We are indebted to Mr. J. McGrath, who asked a question wkich led to the above
observation.

In this section we derive a necessary condition for homogene¢ous, ncn-Baire msfric
spaces to be CDH. We also discuss applications of set-theoretic techniques of Miller
[16] and of Baumgartner [S] to CDH spaces.

Lemma3.1. If X is a homogeneous, non-Baire space, then X is meager (= 1st category).

Proof. There exists an open set U such that, for some countable collection # of
dense open sets in X, U (") £)=0. By homogeneity, every point of X belongs
to such an open set U. Indeed, the collection % of all such open sets forms a basis
for the topology of X. Let &/ be a maximal disjoint collection of elements of %!
For each A€ o, let {G,(A): n<w} be a countable collection of dense open <et: i1
X such that (N, __ G,.(A))nA=4. For each n, let H,=UJ ., (G,(A)n A). Tren

n<w
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each H, is a dense open set in X, and (., H.=0. So X=UJ,_, (X\H,) is
meager. [

Remark. An eariier version of this lemma had an additional, unnecessary hypothesis;
this was kindly pointed out by Mr. R. Knight and by R.W. Heath. It should also
be pointed out that Lemma 3.1, together with Theorem 2.5, shows that there is a
CDH non-Baire metric space if and only if there is a CDH meager metric space.

Lemma 3.2. If X is a separable, metric, meager space, then some countable dense
subset of X is a Gs-set in X,

Proof. Suppose X =|J,-, F,, where each F, is closed and nowhere dense. Let
U={U:ieZ"} be a countable basis for X. Choose x,€ U, and, for each n>1,
choose x, € U..\(L,l:.';,l F,). Let C ={x,: ne Z"}. Then C is a countable dense subset
of X, and, for each ne Z*, C intersects F, in at most n points. It follows that C
isa Gpset. O

Lemma 3.3. If X is a CDH space and some coi:iiiabie dense subset of X is a G;-set,
then every countable subset of X is a Gs-set.

Proof. Firstly, every countable dense subset of X must be a G;-set, since X is
CDH. Now, suppose A is a countable subset of X. Let B be a countable, dense
subset of X; then Au B is countable and dense in X. Since AU B is a G;-set in
X, and Ais a Gs-setin AUuB, Aisa Gssetin X. O

Definition. A space in which every countable set is a G;-set is called a A-set. We
have the following.

Theorem 3.4. Every CDH, meager, metric space is a A-set. Every CDH, homogeneous,
non-Baire metric space is a A-set.

Remark. This can be used to show that certain spaces which seem likely candidates
for CDH, non-Baire spaces are actually not CDH. For example, consider the subset
of R’ consisting of all points with exactly one rational coordirate. This space,
although strongly locally homogeneous and strongly n-homogeneous for all ne Z*,
is not CDH, since it contains as a closed, nowhere dense set, a copy I of the
irrationals. Then I contains a countable dense subset C, which cannot be a G;-set
in the space, for if it were it would be a Gs-set in I and, therefore, completely
metrizable; but C is homeomorphic to @, the rationals. In a similar manner it
follows that the set cf all rational ponts in real Hilbert space is not CDH.
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Remark. It is easy to see that if Y is a A-set and f: X - Y is a continuous bijection,
then X is a A-set. Therefore, no continuous bijective image of the irrationals can
be a A-set.

Theorem 3.5. If X is a meager, CDH metric space, then X does not contain a copy of
an uncountable Borel set in R.

Proof. If Y € X is homeomorphic to an uncountable Borel set in R, then there is
a continuous bijection f from a closed subset A of the irrationals onto Y. But A
cannot be a A-set. [J

Corollary. Q” is not CDH, and if Z is a separable metric space which contains = copy
of an uncountable Borel set in R, then Q x Z is not CDH.

Theorem 3.6. It is consistent with ZFC that every CDH metric space X with | X|=¢c
is nonmeager.

Proof. By a result of Miller [15] there is a model M of ZFC such that the Cantor
set contains no A-sets of cardinality ¢c. Since the Hilbert cube is a continuous image
of the Cantor set, it follows that each separable metrizable space X is a continuous
bijective image of a subspace Z of the Cantor set. By the above, if | X|=|Z|=¢,
then Z is not a A-set. Thus, by the second remark after Theorem 3.4, X is not a
A-set. By Theorem 3.4, X is nonmeager. [

Corollary. It is consistent with ZFC that every CDH metric space X with |U|=c for
every open set U in X is Baire.

Proof. Assume X is CDH, metric, non-Baire, and [U|=c¢ for every open U in X.
There exists an open set U in X such that, for some countable <ojiection G of
dense open sets in X, (1) G) n U =§. Let X’ be the union of all such open sets U.
If he H(X), then h(X’) = X'. Suppose X' is not closed, and let B be the boundary
of X'. Then B is nowhere dense, and h(B)=p for every he H(X). Let C be a
countable dense subset of X\B, and iet D be a countable subset of B. There is no
h e H(X) that takes C to C u D, unless D =. Therefore, B is empty. We have that
X' is open and closed in X and CDH. There is a countable collection {U,: n€e Z *1
of open sets in X such that, for each ne Z*, there exists a countable collection
{gmn: me Z"*} of dense open sets in X such that ((),,.,+ &nr) " U, =9, and such
that X'={J,_,+ U,. Let F,,,=X\gma.. Then X'=UJ,,, F,. is meager. O

Remark. We will see in Section 4 that the continuum hypothesis implies that there
is a meager CDH X c R; hence, it is independent with ZFC that there is a meager
C™H metric space of size c.
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Definition. A subset X of R is o,-dense if every open interval contains exactly
w..manv noint of X.
@,-many point of

Theorem 3.7 (PFA). There is a non-Baire CDH space of cardinality less than c.

Indication of Proof. The proof is very similar to the proof of Theorem 6.9 of
Baumgartner [5] and yields the stronger result that, under proper forcing, if X and
Y are any two w,-dense subsets of R and if A and B are ccuntable dense subsets
of X and Y, respectively, then there exists an order-preserving homeomorphism
h: X - Y such that h(A) = B. Therefore, every w,-dense set in R is CDH.

Madify Raumeartner’s nroof as follows. Renlace the noset O by O. =l f a) f
(VIWIIJ uuu B3, 6“ SSEAWE lllvvl ANVEARW VVSs AW vr WYY AW r A~ Y ¥J Y1 NS O/*J
and o ors ardar nracamnne Gnita finctinne cnch that (1) doam Ffc A ran fc R
G § aiC OIGCI-PICOCIVINE e 1UlICUUNS Sulil ulal (1) QUL j = /3, 14l = 55,
A 2o~ VWV anm ace V (D) dace £ doon ao—eil and (2) £ .0 ic ardar eeacamninsl
QOM ES A, Tan g 7, (o) GOij NAOM g=v, and () Jj ug IS OTGer-prescrvingy.
™ RN of of Theorem 6.9 Lo alon 3 .Coene € £ Liacs N
lnc“, W€ Cupy uie prU iacuieii 9.7 CAUcpl. 191 ulc uclulluuu un Y. IICIC Yy

will consist of all g € Q, with g = m,(q) satisfying the conditions (6) and (7) on p. 943.

Note that, since PFA implies ¢> w,, it is easy to construct an w,-dense set in R.
Also, PFA implies MA,,, which in turn implies that every dense subset of R of
cardinality e, is not Baire. []

Remarks. Spaces indicated in Thecrem 3.7 in fact exist when MA and w, <¢ are
true. It directly follows from the method used in [18], also see [22].

4. Constructing CDH spaces
The following lemma from set theory is useful in producing spaces that are CDH.

Lemma 4.1. Suppose that F is a countable subset of H(X), that A is an uncountable
subset of X, that D and C are countable subsets of X, and that if g € G, the subgroup
of H(X) generated by F, then g(D) ~ C =@. Then there exists a countable subset E
of X such that EnA#Q, D<E, g(E)=Eand EnC=0 forallgeG.

Proof. Assume the hypothesis. Let C'={g(C): ge G}, D'={g(D): g€ D}. Then
C'nD'=¢ and C' and D’ are countable. Pick pe A\C’, D"=D'u{p}, and set
E =\J{g(D"): g G}. Then E has the desired properties. [J

Remark. Let k and n be positive integers. The standard proof that R” is CDH yields
the following observation. If A,, ..., A, are disjoint countable dense sets in R" and
B,,..., B, are disjoint countable dense sets in R", then there exists h € H(R") such
that h(A )=B, i=1,...,k Call such a space k-CDH.

Van Mill [20] gave an example of a connected and locally connected Baire
subspace X of R? such that X is strongly locally homogeneous but not countable
dense homogeneous. Cn the other hand, it is known [12] that if X is a separable
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completely metrizable, strongly locally homogeneous space, then X is necessarily
countable dense homogeneous. The following theorem shows that, under the con-
tinuum hypothesis, complete metrizability does not follow from the joint assumption
of homogeneity, countable dense homogeneity, and strong local homogeneity, and
being Baire.

Theorem 4.2 (CH). Let n be a positive integer. There exists a Baire subspace X of R"
such that X is homogeneous, strongly locally homogeneous, and countable dense
homogeneous, but X contains no uncountable Borel set; hence X is not completely
metrizable. In case n =2 X is connected and locally connected.

Proof. We will write R" as the union of two disjoint sets X and Y such that X has
the desired homogeneity properties and both X and Y intersect every uncountable
Borel set in R". Let R" ={r,: a <w,}. Let 7:w, X ;> »; be a bijection such that
@(B, v) =B and #(0,0)=0. 7(B, y) =B happens iff y=0 and B is in a fixed closed
unbounded subset of w,. Let {B,: a <w,} be the set of all ucountable Borel sets
in R". Let {U,: k <w} be a countable basis for R", U,=R", and if k>0, U, is an
open ball. Note that if D is a countable dense subset of R" and {x, y}= Dn U,
k=0, then there is an h € H(R") such that h(x) =y, h(D) = D, and h is the identity
outside U;. Choose D, to be a countable dense subset of R", Dy~ B, #8, ro€ D,.
Dy={xy;: i <w}. For each i, j, k<w, let h};; be an element h of H(R") such that
if {xo,, Xo,;}% Ui, then h is the identity and such that if {x,;, X, ;}< U,, then
h(xo:) = xo,j, h(Do) = Dy, and h is the identity outside U,.
Let H, be the subgroup of H(R") generated by {h{,;: i, j, k <w}. There exists a
countable dense subset C, of R"\ D, such that Con B, #@, and h(C,) = C, for all
he H,. Let {{A,,, B, ,): Yy <w,} be the collection of all ordered pairs of countable
dense subsets of D,, chosen so that Dy\ Ago and Dy\ B, are dense in D,. By the
observation above, there exists an foc H(R") such that f,(Co) = Co, fo( D) = Dy,
and fy(Aop) = B;.. Now suppose that 0< a <w,, and that C,, D,, f; have been
defined for 0=< ¢ <a, and two listings (A,,, B;,). <., and {x;:).-,, and a collection
(hf;4)ijk<w» Dave been defined such that
(1) C; and D; are countable dense subsets of R", C; D; =0,
(2) {ry:m<élesD, L,
(3) D,nB;#9 and C,n B, #9,
4 U,.,D,csD;andU,_,C,cC,
(5) ;e HR"), and if O0sy<¢ then f,(C,)=5,"(C)=C; and f(D;)=
f :,l( Dg) = Dg,

(6) {(As,, B:,): ¥y <w,} is the collection of all ordered pairs of countable dense
subsets of D,, such that if 7~ '(£)=(& ) (in fact 77 '(£) =(£ 0)), then let
Ao, = Bgoy= Do and
(a) DA, and D\ B, are dense in D,,
(b) f:(Az1) =B,
(¢) each pair (A,,, B;,) appears w, times in {(A.,, B:,}' & y<w},
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(7) D;={x:: i<w}, hi;=he HR"), and
(@) if {xg, Xz} # Ui, then h is the identity, and
(b) if {xzi. xc;} < Uy, then h(D;)=D;, h(x;;)=x;, and h is the identity
outside U;,

(8) forall n<§& hJ;x(D;)=(h7;:) (D) = D, and h7;,(Ce) = (h;)"(Ce) = Cy
Let (8, v)=#""(a). If B=a define D, =U,_, D;, Co =U,.C;, fo =identity. If
B < a, define D,, C,, f. as follows.

(a) D, contains the first element of R" not in U,., D;vU,., C:,

(b) D, B, #0, D, is countable, U,., D; S D.,

©) Dun(U;c, G =09,

(d) f(D,)=D, forall {<a,ie., D, is closed under f;,

(e) D, is closed under h{;,, for all £<a, forall i, j, k<w,

(f) D,\Ag, and D,\Bg, are dense in D,.

Let {{A. . B..,): ¥ <,} be the collection of all ordered pairs of countable dense
subsets of D,. Let D, ={x,,: i <w}. For each i, j, k<, let h{;; be an element h
of H(R") such that if {x,;, X, ;j}# Ui, then h is the identity and if {x,;, X, ;} = Us,
then A(x, ;) =X, j, #{(D.) = Da, B, Ce) =U,, C; and h is the identity outside
U,. Next, choose C, so that

(@) C, is countable, C,n B, #9, and | ,_, C,cC,,

®') C.nD, =9,

(¢’) C, is closed under the elements of the group generated by f;, 0<¢<a, and
hiin, 0<9<a,ij k<

Next, define f, € H(R") to be such that £,(C,) = C,, fo.(D,) = D,, and f,(Ag,) =
Bg,. Finally, let X=UJ,,_,, D. and Y={J,_,, C..

Clearly, X contains no uncountable Borel set, since X n (U
U.a<e, Ca intersects every uncountable Borel set.

Let M and N be two countable dense subsets of X. There exists B <, such that
My N c Dg. There exists y <o, suchthat M = Ag, and N = By . Let a = 7(B, 7).
Then a=p8, so Mu N < D,, and, moreover, f,(M) = N. Therefore, X is CDH.

Let x and y be two points of X. There exists a such that {x, y} = D,. There exist
i, j such that x=x,; and y =x, ;. Then hj;o is an automorphism oii R" that 1akes
x to y and X tc X. Therefore, X is homogeneous. Let xe X and let U be open in
X, x€ U. There is a k>0 such that xe Uy n X c U. Let y € U,. There exists a <o,
and there exist i<w and j<o such that x=x,; and y=x, ;. Then h{;; is an
autohomeomorphism on R" that takes x to y, is fixed outside U and takes X onto
X. Therefore, X is strongly locally homogeneous.

In case n=2 then since Y contains no unccuntable closed set, X =R?\Y is
connected and locally connected, by a theorem of Sierpinski (see Section 31 of
Hausdorfl’s Mengenlehre 1931). O

C,.)=0 and

a<w,

Remark. Standard techniques developed by Bennett and others can actually be used
to show that if X is a strongly locally homogeneous, complete separable metric
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space with no isolated points, then (1) X is k-CDH for all k <w, and (2) X has a
countable basis G such that if D is a countable dense subset of X, Ue G, and
{x, y}= DA U, then there is he H(X) such that h(x)=y, h(D)=D, and h is the
identity outside U. This, together with the proof of Theorem 4.2, yields the following.

Theorem 4.2’ (CH). If Z is a complete separable metric space which is strongly locally
homogeneous and has no isolated points, then Z contains a dense subspace X which
is Baire, strongly locally homogeneous, CDH, homogeneous if Z is, and which is not
completely metrizable.

Remark. If we are not concerned with whether X is dense in Z or with whether X
is connected and locally connected, it suffices to consider Z = Cantor set, in which
case Baldwin and Beaudoin [4] have shown, assuming Martin’s axiom, that a CDH
subset X exists which is not completely metrizable.

We conclude by showing that, assuming the continuum hypothesis, there exists
a meager CDH subspace of R. G. Gruenhage has kindly informed us that he also
has a proof of this. His argument is apparently somewhat more complicated than
ours; on the other hand it yields the stronger resuit that, under CH, there is a meager
CDH subspace X of R such that X is of universal measure 0, that is, there is no
nontrivial Borel measure on X.

Lemma 4.3. If A; and B; (i <w) are countable dense sets in R and (A;n A;) =0 and
B;n B;=0 for i#j, then there exists he H(R) such that h(A;)=B;, and h has a
continuous, positive derivative on R.

Proof. This is a modification of [8, Lemma 1]. Proofs are essentially the same. [

Notation. L=t H'(R) denote the subgroup of I (R) whose elements have continuous,
positive derivatives. Let u denote Lebesgue measure. If G is a subgroup of H'(R)
and M c X, then Orb(M, G) denotes {g(x): xe M and ge G}.

Lemma 4.4. Suppose g H'(R), YcZcR, u( g’) =0, g( Y)=Y, and Z is a Gs-set
in R. Then there exists a Gs-set YinR suchthat Y Y< Z, u(Y)=0,and g(Y)=Y.

Proof. There exists a G5-set To< Z such that u(T,) =0 and Y < T,. Foreach n=0,
let T, =Tong(T,)ng (T,);let Y=, ., T,. O

Lemma 4.5. Suppose G is a countable subgroup of H'(R), Yc R: wn( Y)=0, and
g( f') =Y for every g € G. Then there exists a Gs-set Yin R suchthat Y < Y, u(¥} =3,
and g(Y)=Y for every ge G.



12 B. Fitzpatrick Jr, Zhou H.

Proof. Enumerate G ={g,: n < w} in such a way that every g in G } appears infinitely
many times in the enumeration. There is a Gs-set Y, such that Yc Yo, pn(Ye)=0,
and go(Y,) = Y,. For each n=0, there is a G;-set Y,., such that YcY,.cY,,
p(Ynir)=0, and g,1(Yosy) = Your. Let Y=,_, Y,. O

Theorem 4.6 (CH). There exists a meager CDH subspace X of R.

Proof. Our plan is to find a A-set that is CDH and dense in R.

Let 7: 0, X 0, = @, be abijection such that 7(0, 0) =0and #(B, y)=B. #(B, y) =8
happens if and only if y=0 and B is in a fixed closed unbounded subset of w,.
For a <w®,, inductively define countable dense subsets X, of R, G;-sets Y, SR,
and functions f, € H'(R). For each a <w,, {(A, ,, B..,): ¥ <®,} is the collection of
all ordered pairs of countable dense sets in X,,, with repetition such that each pair
of countable dense sets of X, appears w, times in {(A, ,, B, ,): y<w,} and Va, if
7 (@) =(a,0), then A, o= B,o=Ag,- G, is the subgroup of H'(R) generated by
{fz:B<a}.

Choose X, to be a countable dense subset of R, and choose Ayp and By so that
Xo\Aoo and Xo\ B, are dense in X,. Choose fo€ H'(R) so that fo(Ago) = By and
Jo(Xo) = Xo. There exists a Gs-set Y, in R such that X,< Yy, pu(Yo)=0, and
S Yo)=Y,.

Suppose 0< a <w,, and suppose X, Y;, f; have been defined for 0< ¢ <a, and
that

(1) X;isacountable densesetinR, Y, is a Gs-set, X, < Y, u(Y;) =0, f€ H'(R),

(2) V9 <§g O(X,,G,)=X,<X,, Y, Y,

(3) Vge G, g(Y,) =Y, Ob(Y,, G,)c Y,, for any n<§¢,

@) V9 <§ (X \X,)nY, =0, and

(5) f(A,g)) =B and f(X) = X, for all ¢'<¢&

Case 1: a is a successor ordinal, a = v+ 1. Take xeR\Y,. Then (Orb({x}, G,))n
Y.=0. Let (B, y)=7""(a). IfB=a,let X,=X,, Y,=Y,, and £, be the identity.
Assume B <a, Ag,, Bg, are countable dense sets of X;. Of course they are also
dense in R. Take a countable dense subset C = R\Orb( Y,, G,) with C =Qrh(C, 7, }.
Let X,=X,UC. By Lemma 4.3, there is f, € H'(R) such that f,(Ag,)=Bg,,
S\l U X \Ag,)=Cu X,\Bg,. So X, =0rb(X,, G, ) if G, is the group generated
by G, u{ﬂ.} Clearly, X,nY, =X, for n<a. Let Y, Orb(X vY,, G,). Then
g( Y ) = Y forall g e G,. There exists a G;5-set Y,, in R such that Y cY,,u(Y,)=0,
and g(Y,)=Y, forall ge G,.

Case 2: a is a limit ordinal. Let X,=\J,_, X,. Note that X,\A,-1,, and
X2\ B\, are dense in X,,. Take f, € H'(R), f. (A, ' (a)) = ByY(a), fou (X.) = X,. Let
Y=0rb(U,_, Y G.). Now, u(Y)=0, and g(Y) =Y for all ge G,. There exists
a Gs-set Y, such that Yc Y,, u(Y,)=0, and g(Y,)=Y, for all ge G,.

It follows that (1)-(5) hold for 0<¢=<a.

Let X =Ua<w‘ X,. To show that X is CDH, it suffices to show that f;(X)=X
forall § <w,.Suppose x € X. Thenx € X, forsome a > £,50f:(x) € X, 1:; sofy(x)e X.-
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« O, Where each G, is open, we have X =({U,., (X\G,))UlU,<, {X.}, so
tne countable union of closed, nowhere dense sets. This completes the proof. [J

§. Questions
Question 1. Is there an absolute example of a CDH metric space of cardinality w,?

Question 2. If X is CDH and U is open in X and U is homogeneous, is U
necessarily CDH?

Nnactian Te avarv anon
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