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Conditions are given that ensure that certain open su 
are countable dense homogeneous. Also, results are 
countable dense homogeneous metric space Baire? Is ev&v one completeJy metrizabJe? 
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1. Introdaction 

All spaces under consideration are assumed to be T’ . If X is a space, then H(X) 
denotes the group of all autohomeomorphisms on X. 

Even before Sierpinski 1173 had introduced the notion of a nonxgeneous space, 
Frechet 1143 and Brouwer [7] had observed that Euclidean n-dimensional space 
has the property that if A and B are two countable dense sets in Y then some h 
in H(R”) takes A onto B; they needed this theorem in their development of 
dimension theory. In 1962, Fort [13] proved that the Hilbert cube has the same 
property. In 1972, Bennett [6] isolated this property. He 
dense homogeneous (CDH) provided that X is sepa 
two countable dense subsets of X, then there is an h E 
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Theorem 1.1 (Bennett). Every first countable, connecteci, CDH space is homogeneous. 

The condition of first countability was later removed independently by Cook and 
Ford. Their work was not published; a theorem from which theirs follows has 
recently appeared [lo]. That the connectedness condition cannot be removed is 
readily seen by considering the disjoint union of a l-sphere and a 2-sphere. Noting 

ponent of this example is CDH and, therefore, homogeneous led to 
etvation that every component of a CDH space is CDH and is, if non- 

, open in the space. The same uments will work for quasi-components, 
nents are precisely the components, so 

this gives nothing new. on 2 of this paper discusses the hereditary character of 
COU 

co a roble, metric, strongly locally 

is strongly locally homogeneous provided that there is a 
of X such that if {p, q}~ U E B, then there is an h E H(X) 
h(x) =x for all XE X\U. That local compactness can be 

by completeness in this theorem was shown by Fletcher and McCoy [12] 
n, Curtis and van Mill [S]. Van Mill [20] demonstrated that the 

be further relaxed; he gave an example of a co~ected, locally 
re subset of the plane that is &ongly locally homogeneous but not 

ave provided [ll] an example of a connected and locally connected 
ich is CDH but not strongly locally homogeneous. In [21], 

Watson and Simon constructed such an example which is also regular. The question 
as to whether there is an example which is me&able remains open. All previously 
known examples of CDH spaces seem to be Baire, which leads us to examine in 

ens 3 and 4 the relation between CDH and the Baire property. 
Section 4 is devoted to a technique for constructing CDH spaces, thereby providing 

pertinent examples for the questions mentioned. 

2. Open subsets of CDH spaces and a decomposition theorem 

In 1978, Ungar [19] established that a continuum other than S’ is CDH if and 
only if it is strongly n-homogeneous for all positive integers n. It was stated as 
corollary to the main results that every open dense subset of a CDH continuum is 
itself CDH. There appears to be a gap in the argument for this corollary, and we 
regard the question as still open.’ For l-dimensional continua the statement does 
hold. The proof is a straightforward consequence of several known theorems; we 
include it here for the sake of completeness. 

’ We are indebted to J.M.S. White for this observation. 
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Theorem 2.1. Every open subset of a l-dimensional CDH continuum is CDH. 

Proof. If X is a CDH continuum, then X is homogeneous [6]; also, X is locally 
connected 191. Anderson showed [2] that a l-dimensional locally connected 
homogeneous continuum must be either the simple closed curve or the Menger 
universal curve. He also showed [l] that the Menger curve is strongly locally 
homogeneous. Clearly, S’ is, also. It is trivial that open subsets of strongly locally 
homogeneous spaces are themselves strongly locally homogeneous. So, if U is an 
open subset of a I-dimensional CDH continuum, then U is a locally compact, 
separable, stt.<jngly locally homogeneous metric space and is therefore by Bennett’s 
Theorem 1.2 cited above, CDH. I3 

Remark. That not every open dense subset of a I-dimensional ho 
tinuum is homogeneous can be easily seen by removing from the dyadic solenoid 
two points of the same composant. The resulting subspace has one arc co 
that is locally compact and others which are not, 

Remark. Our example [lI] mentioned in the introduction is a connected, 
connected, CDH, Bake, Ha&or& space with a dense, open, connected 
that is not CDH, not even homogeneous. We do not know of such an example that 
is met&able. 

It is known [lo] that components of CDH spaces are CDH and are, if nontrivial, 
open sets. It is easy to verify that the components of a CDH space are the 
quasi-components of the space. The following are further partial results about the 
hereditary nature of CDH. 

Tii~rem 2.2. IjX is a CDH metric space and U is a lwally c~ ct subset of X that 
is both open anti closed, then U is CDH. 

Proof. Let X = Au B, where A is the union of all nondegenerate components of X 
and B = X\A. Since A is the union of sets that are open and closed and CDH, A 
is CDH. Since every member of H(X) maps A onto itself, A must have empty 
boundary. Therefore, both A and B are open and closed and CDH. Let D be the 
union of all degenerate open components of X and E be the union of the rest of 
the degenerate components of X. Then D and E are open and closed and CDH. 
If U is open and closed in X, then U=(UnA)~u(UnD)u(UnE). Since U 
contains every component of X that it intersects, U n A is CDH. Clearly, U n t) 
is CDH. The subspace U n E is locally compact, O-dimensional, and every point 
of U n E is a limit point of U n E, and U n E is the union of a countable discrete 
collection of Cantor sets and is therefore CDH. It follows that U is CDH. II 
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Cordluy. Let X be a localiy compact, CDH, metric space. If every dense open set in 
X is CDH, then so is every open set. 

Proof. Let U be open in X Let Y = X\bdry( U). Then Y is open and dense in X, 
so Y is CDH. Then U, as an open and closed subset of the locally compact, CDH 
s,pace Y, is CDH. a 

2.3. If X is a complete, metric CDH, O-dimensional space, then every open 
subset of X is CDH. 

Proof. Let A be the set of all isolated ints of X; let B be the set of all points of 
X\A at which X is locally compact; nad iet C = X\(Au B). 

It follows that each of A, 4 and C is op~~ i-r& closed in X and CDH. As before, 
8 is the union of a countable discrete { empty) colkction of Cautor sets, 
and so is every open subset of a The set t‘ is, if nonempty, a separable, O- 
dimensional, nowhere locally compact, complete metric space and is therefore 
homeomorphic to the inationals, and so is every open subset of C. It follows that 
every open subset of X is CDH. 0 

corellarg, Let X be a compkkt~ O-dhmsiowi sepamble met& spa= Ikn X is CDH 
if und only if X is sttangly locally homogeneotrs. 

bm 2.4. If euery CDH continuum is hereditarily CDH with respect to open subsets, 
then so is every CDH compact metric space. 

Proof. If X is a compact, CDH metric space, then X = Au B u C, where A is empty 
f ir finite number of nondegenerate continua, B is finite, and C is 

empty or the Cantor set, and each of A, B, and C is open and closed in X. Let U 
be open in X. By hypothesis, Un A is CDH. Clearly, U n B and U A C are CDH. 
Thus, U is CDH. Cl 

Remark. Every l-dimensional CDH compact metric space is hereditarily CDH with 
respect to open subsets, by the above argument and by Theorem 2.1. 

Remark. The results of this section are, admittedly, fragmentary, indicating that 
there is much that remains to be done. 

We conclude this section with a decomposition theorem. 

Theorem 2.5. If X is CDi!& densely homogeneous (= homogeneous with respect to 
o-discrete dense subsets) or strongly locall’ ksmogeneous, then X is the union of a 
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discrete collection of homogeneous subspaces, each of which is CDH, densely 
homogeneous, or strongif locally homogeneous, respectively. 

Proof. Partition the space into equivalence classes, where x - y if and only if y = h(x) 
for some h E H(X). We claim that each equivalence class [x] is open. That &is is 
so in case X is strongly locally homogeneous is immediate. Suppose that there exists 
a class % of dense subsets of X such that 

(1) if C E %, Ds C, and D is dense in X, then DE %% 
(2) ifCE%andxEX,thenCw{x}E%,and 
(3) if CE % and DE W, then h(C) = D for some h E H(X). 

Such is the case provided that X is CDH or densely homogeneous. 
Let E be the collection of all equivalence classes which are open. If U E = X, 

then the desired conclusion follows. Suppose, then, that U E # X Let X’= 
X\(U E). Then X’ is invariant under every autohomeomorphism on X, and if 
XE X’ then [x]~ X’, and X’ is open and closed in X and has a class 
subsets satisfying (l)-(3) abet :. Thsrefore, we may, without loss of generality9 
assume that X=X’, that is, that no equivalence class in X is open. It is My to 
see that no [x] can contain a nonempty open set, It follows that if SE % ahld p E x 
then neither Sn [p] nor Sn (X\[p]) is dense in X 

The argument on [lo, p. 213, m word for word, yields a *so 
that U E =X, and each equivalence class [p] is open. Surely, each is homogeneous 
and, respectively, CDH, densely homogeneous, or strongly locally homogeneous. 
Since E is a covering of X by disjoint open sets, E is discrete, and the proof is 
complete. Cl 

We are indebted to Mr. J. McGrath, who asked a question which led to the above 
observation. 

In this section we derive a necessary condition for homogeneous, non-Bake mctkc 
spaces to be CDH. We also discuss applications of set-theoretic techniques of Miller 
1161 and of Baumgartner [S] to CDH spaces. 

Lemma 3.1. If X is a homogeneous, non-Baire space, then X is meager ( = 1 st category). 

Proof. There exists an open set U such that, for some countable collection 9 of 
dense open sets in X, U n (n 3) = 0. By homogeneity, every point of X belongs 
to such an open set U. Indeed, the collection 4% of all such open sets forms a basis 
for the topology of X. Let & be a maximal disjoint collection of elements of q?. 
For each A E J$ let {G,(A): n c W} be a countable collection of dense open sets ill 
X such that <n,,, G,(A)) A A = 8. FOI- each n, let 29, = U,j,d (G,(A) n A). I’FVW 
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each Km is a dense open set in X, and n,,,, H, = 0. So X = U,,, (X\H,) is 
meager. Cl 

Remark. An earlier version of this lemma had an additional, unnecessary hypothesis; 
this was kindly pointed out by Mr. R. Knight and by R.W. Heath. It should also 
be pointed out that Lemma 3.1, together with Theorem 2.5, shows that there is a 
CDH non- re metric space if and only if there is a CDH meager metric space. 

metric; meaget space, then some countable dense 
X is a &set i5 X. 

, 4, where each F$ is closed and nowhere dense. Let 
untable basis for X. Choose x1 E U1 and, for each n > 1, 
). Let C = {xn: n E 2”). Then C is a countable dense subset 

+, C intersects F, in at most n points. It follows that C 

some mwtabk dmse subset of X is a G&set, 

every countable dense subset of X must be a G6-set, since X is 
ow, suppose A is a countable subset of X. Let B be a countable, dense 

X; then Au B is countable and dense in X. Since A u B is a &set in 
is a C&-set in Au B, A is a &set in X Cl 

A space in which every countable set is a Gs-set is called a A-set. We 
have the following. 

Tk~m 3.4. Every CDH, meager, metric space is a h-set. Every CDH, homogeneous, 
non-Bait metric space is a h-set. 

Remark. This can be used to show that certain spaces which seem likely candidates 
for CDH, non-Baire spaces are actually not CDH. For example, consider the subset 
of R” consisting of all points with exactly one rational coordirLate. This space, 
although strongly locally homogeneous and strongly n-homogeneous for all PI E Z+, 
is not CDH, since it contains as a closed, nowhere dense set, a copy I of the 
irrationals. Then I contains a countable dense subset C, which cannot be a Gs-set 
in the space, for if it were it would be a G8-set in I and, therefore, completely 
metrizable; but C is homeomorphic to Q, the rationals. In a similar manner it 
follows that the set Gf all rational po’nts in real Hilbert space is not CDH. 
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Remark. It is easy to see that if Y is a h-set and f: X + Y is a continuous bijection, 
then X is a A-set. Therefore, no continuous bijective image of the irrationals can 
be a h-set. 

Theorem 325. If X is a meager, CDH metric space, then X does not contain a copy of 
an uncountable Bore1 set in UU. 

hf. If YE X is homeomorphic to an uncountable Bore1 set in 
a continuous bijection f from a closed subset A of the irrationals onto Y. But A 
cannot be a A-set. El 

Capillary. Q” is not CDH, and if2 is a separable metric space which cont&$ G copy 
of an uncountable Bone1 set in , then 611x25s not CDH, 

Theorem 3.6. It is co&stent with ZFC that ~9 CDH metric space X with [Xl= c 
is nonmeager. 

Proof. By a result of Miller [IS] there is a model M of ZFC such 
set contains no A-sets of cardinal&y c. Since the Hilbert cube is a continuous 
of the Cantor set, it follows that each le met&able space X is a contbous 
bijective image of a subspace 2 of the Cantor set. By the above, if 1X1= 121 =c, 
then 2 is not a A-set. Thus, by the second remark afm Theorem 3.4, X is not a 
A-set. By Theorem 3.4, X is nonmeager. q 

Corollary. It is consistent with ZFC that eve9 CDH metric space X with [Ui =c for 
eve9 open set U in X is Baire. 

proof, Assume X is CDH, metric, non-Baire, and Iu~= c for every open U in X. 
There exists an open set U in X such that, for some countablct Gcriiection G of 
dense open sets in X, (n )nU=d.LetX’betheunio fall such open sets U. 
If h E H(X), then h(X’) = X’. Suppose X’ is not closed, let B be the boundary 
of X’. Then /3 is nowhere dense, and h(B) = /3 for every h E H(X). Let C be a 
countable dense subset of X\/3, and iet D be a countabfe subset of /3. There is no 
h E H(X) that takes C to C u D, unless D = 0. Therefore, /3 is empty. We have that 
X’ is open and closed in X and CDH. There is a countable collection { Un: n E 2’) 
of open sets in X such that, for each n E Z+, there exists a countable collection 

1g : m E 2’) of dense open sets in X such that (nmEL+ g,,J n U, =8, and such 
tham;“X’= UnEZ+ U,,. Let Fm,, = X\g,,,,. Then X’ = Umsn Fm,, is meager. Cl 

Remark. We will see in Section 4 that the continuum hypothesis implies that there 
is a meager CDH X c R; hence, _& it is independent with ZFC that there is a meager; 
C9H metric space of size c. 
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Definition. A subset X of R is w,-dense if every open interval contains exactly 
q-many point of X. 

Theorem 3.7 (PFA). rolere is a non-Bake CDH space of cardinality less than c. 

In&at&m of hoof. The proof is very similar to the proof of Theorem 6.9 of 
Baumgartner [S] and yields the stronger result that, under proper forcing, if X and 
Y are any two o,-dense subsets of iw and if A and B are ccuntable dense subsets 
of X and YI respectively, then there exists an order-preserving homeomorphism 
h : X + Y such that h(A) = 8. Therefore, every q-dense set in 

Modify Baumgartner’s proof as follows. Replace the poset Q by Q, = ((f, g): f 
and g are order-preserving finite functions such that (1) dom f s A, ran f s B, 
dom gc X, ran gc Y, (2) dom f ndom g =a, and (3) fug is order-preserving}. 
Then, we copy the proof of Theorem 6.9 except for the definition of 0. Here a1 
will consist of all q E Q, with g = w,(q) satisfying the conditions (6) and (7) on p 

Note that, since PFA implies c > Q) 1, it is easy to construct an o,-dense set 
Also, PFA implies M&, which in turn implies that every dense subset of 
cardinality ml is not Baire. Cl 

I&mark Spaces indicated in Theorem 3.7 in fact exist when MA and o1 <c are 
true. It directly follows ftom the method used in [18], also see [22]. 

4 Constructiog CDH spaces 

The following lemma from set theory is useful in producing spaces that are CDH. 

Lemma 4.1. Suppose that F is a countable subset of H(X), that A is an uncountable 
subset of X, that D and C are countable subsets of X, and that if g E G, the subgroup 
of H(X) generated by F, then g(D) CT C = 0. Then there exists a countable subset E 
ofXsuchthatEnA#0, DcE,g(E)=EandEnC=0forallg~G. 

Proof. Assume the hypothesis. Let C’= {g(C): g E G}, D’= (g(D): g E D). Then 
C’n D’ = $9 and C’ and D’ are countable. Pick p E A\C’, D” = D’u {p}, and set 
E = U {g( D”): g E G}. Then E has the desired properties. c] 

Remark. Let k and n be positive integers. The standard proof that R” is CDH yields 
the following observation. If A,, . . . , Ak are disjoint countable dense sets in R” and 
B I,*--, Bk are disjoint countable dense sets in W, then there exists h E H(W) such 
that h(Ai) = Bi, i = 1,. . . , k Call such a space k-CDH. 

Van Mill [20] gave an example of a connected and locally connected Baire 
subspace X of Iw* such that X is strongly locally homogeneous but not countable 
dense homogeneous. Gin the other hand, it is known [12] that if X is a separable 
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completely metrizable, strongly locally homogeneous space, then X is necessarily 
countable dense homogeneous. The following theorem shows that, under the con- 
tinuum hypothesis, complete metrizability does not follow from the joint assumption 
of homogeneity, countable dense homogeneity, and strong local homogeneity, and 
being Baire. 

Theorem 4.2 (CH). Let n be a positive integer. There exists a Baire s&space X of 
such that X is homogeneous, strongly locally homogeneous, and countable &nse 
homogeneous, but X contains no uncountable Bore1 set; hence X is not completely 
met&able. In ease n = 2 X is connected and locally connected 

proof, We will write R” as the union of two disjoint sets X and Y such that X ha 
the desired horn properties and both X and Y intersect every uncountable 
Bore1 set in W”. = (rQ: at 6 q}. Let n: ut x mt + wt be a bijection such that 
rr(/3, y) 3 /9 and ~(0, 0) = 0. n(& y) = /3 happens ifi y = 0 and /3 is in a fixed closed 
unbounded subset of ol. Let { Ba,: a c q} be t uncountable Bore1 sets 
in UU*. Let (I&: k< o) be a countable basis fo andifk>O, Uk isan 
open ball. Note that if D is a countable den n and {qy)c Dn &, 
kaO,thenthereisanhEH( “) such that h(x) =y, h(D) and h is the ide 
outside U& Choose DO to b countable dense subset of 
D,-, = (~0,~: i c o}. For each 4 i, k c o, let h&k be an element h 
if {Xo,i, q,j}$ Uk, then h is the identity and such that if (~0,~~ ~0,~) c U& then 
h(q,i) = xo,j, h( Do) = Do, and h is the identity outside Uk. 

Let Ho be the subgroup of H(W) generated by {h&k: i j, k < o}. ‘IIme exisas a 
countable dense subset Co of \ Do such that Co A B. # 0, and h( Co) = Co for all 
h E Ho. Let {(&,y, Bo,v): y< e the collection of all ordered pairs of countable 
dense subsets of Do, chosen so that D,\A, and Do\ Bo,o are dense in Do. By the 
observation above, there exists an foe H( “) such that fo( Co) = Co, fo( DO) = Do, 
and fob%,d - pOwe = Now suppose that 0 i a c w lt and that Cr, D,, fs have been 
defined for 0~ 5: c a), and two listings (Ati, l&Jfda, and (x&/.,, arid a collection 

(h$k)i,j..k<cr, 9 have been defined such that 
(1) CE and Dp are countable dense subsets of 
(2j (r,,: ~c&)E Dzut”,, 
(3) D&n Bs#O and C&n S,#0, 

(4) UT<* D,, c De and U,,<& C,, c C6, 
(5) j$ H(W), and if 0s q~e then f,(C,)=f,‘(C~) = C& and S,(Q) = 

f ,‘(D,) = D,, 
(6) {(A&,,, Bz J: y c ol} is the collection of all ordered pairs of awntable dense 

subsets df De, such that if ~~~(5) = (5, y) (in fact a-‘@) = &OH, then let 

4 5,O) = B,,, = Do and 

(a) D&L-?*, and D,\B,-l,,, are dense in D4, 

(b) &(Ar-‘(*I) = B-rr-‘(&j 9 
(c) each pair (AE,Y, &,) appears o1 times in {(/&, J: 4% Y<43 
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(7) De = (x6.i: i c o}, h$k = h E H(R” ), and 

(a) if (x&is xe,i)g V", then h is the identity, and 

(b) if {X,.i. xe,j}c U”, then h( D,) = DE, h(X4.i) = Xe,j, and h is the identity 
outside Uk, 

(8) for all q 6 & h&(De) = (h&k)-‘(De) = De and h&,k(Ce) = (hi!j,d-‘(Ce) = Ce* 
Let (p, 7) = 8(a). If p = a define Da = Q._ De, Cm = UZ,&& fa = identity. If 

# <a, define Da9 Cm, & as follows. 
(a) Da contains the first element of A not in Ue,, Dew Uecp Ce, 
(b) 0, n B, #$, Da is countable, USca QC Da, 

(c) D, n tug,, G) = f4 
(d) ,f,(D,) = Da for all &C a, i.e., D! is closed under j& 
(e) Da is closed under h&k, for all E<a, for all &j, k<m, 

and D,\B,, are dense in Da. 
): 7 c wl) be the colkction of all ordered pairs of countable dense 
Let D, = {G.~: ic a}. For each i j, k< a, let h&k be an element h 
that if (q.8, ~,g) S U”, then h is the identity and if {Q, X-j} C &, 

& = u, h(D,) = DO9 h(&_ C4) = Ugccl CE and h is the identity outside 
choose ca so that 

(a’) Cm is countable, C, n B, i’f3, and &a C& C,, 
(b”) C& n Dp =$, 
(c”) C, is closed under the elements of the group generated by fi, 0~ & < a, and 

&&Hq~~&j,k<oa 
Next, define& E H(W) to be such thatf,(C,) = Co,fa(Da) = Da, andf,(A& = 

J& Finally, let X = IJ _,,, Da and Y = U,,,, C,. 
learly, X contains no uncountable Bore1 set, since X n (U,,,, C,) =0 and 

dl_,,, C= intersects every uncountable Bore1 set. 
Let M and N be two countable dense subsets of X There exists fi c o1 such that 
w N G Dsl. There exists 7 < o1 such that M = A,, and N = DRY. Let ar = P(& 7). 

Then Q * & so M u N G Da, and, moreover, f=(M) = N. Therefore, X is CDH. 
Let x and y be two points of X. There exists at such that (5 y}c 0,. There exist 

4 j such that x = xqi and y = xa,j. Then n$ is an automorphism on FV ihat takes 
x to y and X to X. Therefore, X is homogeneous. Let x E X and let U be open in 
X,xEU.Theteisak>OsuchthatxEUknX~U.LetyEUk.Thereexistsar<ol 
and there exist i<o and j< o such that x =Q and y = xa,j. Then hTj,k is an 
autohomeomorphism on IW’ that takes x to y, is fixed outside U and takes X onto 
X Therefore, X is strongly locally homogeneous. 

ln case u = 2 then since Y contains no uncountable closed set, X = R2\, Y is 
connected and locally connected, by a theorem of Sierpinski (see Section 31 of 
HausdorfI’s Mengenlehre 193 1). c] 

Remark. Standard techniques deFTeloped by Bennett and others can actually be used 
to show that if X is a strongly kxally homogeneous, complete separable metric 
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space with no isolated points, then (1) X is k-CDH for all k< o, and (2) X has a 
countable basis G such that if D is a countable dense subset of X, UE G, and 
{x,y}s Dn U, then there is kH(X) such that h(x)=y, h(D)=D, and h is the 
identity outside U. This, together with the proof of Theorem 4.2, yields the following. 

Theorem 4.2’ (CH). If 2 is a complete separable metric space which is stnrngl!y lixally 
homogeneous and has no isolated points, then 2 contains a dense subspace X which 
is Bake, strongly locally homogeneous, CDH, homogeneous if 2 is, and whtih is not 
compktely met&able. 

Remark. If we are not concerned with whether X is dense in 2 or with whether X 
is connected and locally connected, it sufkes to consider 2 = Cantor set, in which 
case Baldwin and Beaudoin [4] have shown, assuming Martin’s axiom, that a CDH 
subset X exists which is not completely met&able. 

We OoncIude by showing that, assuming the continuum hypothesis, 
a meager CDH subspace of R. G. Gruenhage has kindly informed us 
has a proof of this. His argument is apparently somewhat more 
ours; on the other hand it yields the stronger result that, under CH, there is a meager 
CDH subspace X of R such that X is of universal measure OS that is9 there is no 
nontrivial Bore1 measure on X. 

URDMM 4.3. If Ai and Bi (i < o) are countable dense sets in and (Ai A A,) = ft3 and 
BinBi=@ for i#j, then there h E H(R) such that h(Ai)= Bi, and ir ha a 
continuous, positive derivative o 

proof, This is a modification of [S, Lemma I]. Proofs are essentially the same. U 

N~tatioa. Let H’(R) denote the subgroup of IS(R) wbe elements have continuous, 
positive derivatives. Let ~1 denote Lebesgue measure, If G is a subgroup of H”( 
and M c Xt then Orb( M, G) denotes {g(x): x E M and g E G}. 

Lemma 4.4. Suppose g E H’(R), Pt_ Z c_ IR, p( 9) = 0, g( t) = ?, and Z is a Gb-set 
in Ilk Then there exists a G8-set Yin R such that ? c Y c 2, g( Y) = 0, and g( Y) = Y. 

Proof. There exists a GS-set To s 2 such that p( To) = 0 and ? c_ To- For each n 2 0, 
let T,+, = T,ng(T,)ng-‘(T,); let Y=n,,, T,. •i 

Lemma 4.5. Suppose G is a countable subgroup of H’(R), ? s R, p( t) = 0, ar Id 
g( t) = ?for every g E G. Then there exists a G,-set Yin R such that ? 5 Y, p ( Y) -;s’ I), 
and g( Y) = Y for every g E G. 
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Proof. Enumerate G = {g,,: n < o} in such a way that every g in G-appears infinitely 
many times in the enumeration. There is a Gs-set Y0 such that Y c_ YO, F( YO) = 0, 
and gO( YO) = YO. For each n 2 0, there is a G8-set Y,+, such that ? s Y,+l s Y,, 

Y(L+~)=O, and gn+t(K+l)= Y,+P Let Y=n,,, Y,. 0 

T&w- 4.6 (CH). lolere exists a meager CDH subspace X of 88. 

hrolot, our plan is to find a A-set that is CDH and dense in 
Let w : QI)~ x o1 + wl be a bijection such that ~(0, 0) = 0 and w(@, y) 2 @. n(/3, Y) = /3 

ns if and only if y = 0 and 18 is in a fixed closed unbou 
define countable dense subsets X, of 
. For each a c ml, {(&sy, &,): y < w,} is the collection of 

e dense sets in X,, with repetition such that each pair 
o1 times in {(&,?, BP,,,): y q} and Vu, if 
Ga is the subgroup of H’ ) generated by 

countable dense subset o 
are dense in X0. Choose 

oose A,,0 and BO,O so that 
so that fdAo,o~ = 4.0 ad 

that XOc YO, p( YO) =O, and 

se 0 < a < wl v and suppose X6, Yz, f& have been defined for 0 < e < a, and 
that 

( 1) Xc is a countable dense set in Ys is a G&-set, X’ s Ye, F( Ye) = O,& E H’( 
(2) W=5,OWX&,b=X,= 
3) Vg E G,, g( YeI = Ye, OrbQ Y,,, G,,) s Ye, for any n < 6, 

(4) (X*\X,) n Yq =8, and 
(3 a-“(*)) = Ba-‘(*) and f&#(X,) = X4 for all 5’ s & 
Case 1: a is a successor ordinal, a = v+-1. Take XE \Y”. Then (Orb({x}, GJn 

= 7?(a). If @ = a, let X, = X,,, Y, = Yy, and fa be the identity. 
?, B,, are countable dens ets of X,. Of course they are also 

countable dense subset C c Orb( YP, G,) with C = c??h( C3 G,). 
Let X, = X, u C. By Lemma 4.3, there is L E H’(R) such that fa(Ap,J = BP,?, 
fm& u X,\A,,) = C u Xv\BO.,. So X, = Orb(X,, GQ) if G, is the group generated 
by G, u {&}* Clearly, X, n Yq = X,, for r) < a. Let Ya = Orb(X, u Yv, G,). Then 
g( 9,) = 9’ for all g E G,. There exists a Gs-set Y, in IR such that ?a c Ym, p( Y,) = 0, 
and g(Y,)= Y, for all gEG,. 

Case 2: a is a knit ordinal. Let X, = UE_ Xs. Note that X,\A,-I~,) and 
Xz\B,-l+~ are dense in X,. Take for E H’(R), fa(A,-lq,,) = B,-1(,,, fa(Xa) = X,. Let 
Y = Orb(U,,, Y& G,). Now, p( Y) = 0, and g( Y) = Y for all g E G,. There exists 
a G6-set K such that YS Yu, p(Y,)=O, and g(Y,)= Y, for all gEG,. 

It follows that (l)-(5) hold for 0 s es CY. 

Let X=U Q<0, X,. To show that X is CDH, it suffices to show that &(X) = X 
foralWo,.SuppmexE X.ThenxE &forsomea!> &so&(x)~ Xa+l;~~fS(~)~ X. 
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Therefore,&(X) c X. Again, suppose x E X; then x E X, for some tx 2 f, sof;‘(x) E 
X a+l, so fi-‘(x) E X, so x ~fs(Xt. Tlierrfore, X E.&(X), and we have J4(X) = X. 

We claim that X is a h-set. To see this, suppose D is a countable subset of X. 
Then D c_ X, for some at < q. Now, X n Ye is a &set in X, since Y, is a &set 
in BP. But (X\X,) n Y, = 0, so Xp is a &set in X and is countable, so it follows 
that every subset of it is a Gs-set in X. Therefore, D is a G&-set in X 

Finally, we observe that every separable A-set with no isolated points is meager. 
For, let D ={x,: n c w} be a countable dense subset of the A-set X Since D= 
n,,, Gm, where each G,, is open, we have X = (U,,, (X\G,,))w U,,,, {x,), so 
X is the countable union of closed, nowhere dense sets. This completes the proof. B 

5. Questioos 

QuestIon 1. Is there an absolute example of a CDH metric space of cardinality wt? 

QuestIon 2. If X is CDH and U is open in X and U is horn eoUs, IS U 
necessarily CDH? 

QaestIon 3. Is every open subset of a CDH continuum CDH? 
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