16,263 research outputs found
Ground-state properties of one-dimensional anyon gases
We investigate the ground state of the one-dimensional interacting anyonic
system based on the exact Bethe ansatz solution for arbitrary coupling constant
() and statistics parameter (). It
is shown that the density of state in quasi-momentum space and the ground
state energy are determined by the renormalized coupling constant . The
effect induced by the statistics parameter exhibits in the momentum
distribution in two aspects: Besides the effect of renormalized coupling, the
anyonic statistics results in the nonsymmetric momentum distribution when the
statistics parameter deviates from 0 (Bose statistics) and
(Fermi statistics) for any coupling constant . The momentum distribution
evolves from a Bose distribution to a Fermi one as varies from 0 to
. The asymmetric momentum distribution comes from the contribution of the
imaginary part of the non-diagonal element of reduced density matrix, which is
an odd function of . The peak at positive momentum will shift to
negative momentum if is negative.Comment: 6 pages, 5 figures, published version in Phys. Rev.
K-Chameleon and the Coincidence Problem
In this paper we present a hybrid model of k-essence and chameleon, named as
k-chameleon. In this model, due to the chameleon mechanism, the directly strong
coupling between the k-chameleon field and matters (cold dark matters and
baryons) is allowed. In the radiation dominated epoch, the interaction between
the k-chameleon field and background matters can be neglected, the behavior of
the k-chameleon therefore is the same as that of the ordinary k-essence. After
the onset of matter domination, the strong coupling between the k-chameleon and
matters dramatically changes the result of the ordinary k-essence. We find that
during the matter-dominated epoch, only two kinds of attractors may exist: one
is the familiar {\bf K} attractor and the other is a completely {\em new},
dubbed {\bf C} attractor. Once the universe is attracted into the {\bf C}
attractor, the fraction energy densities of the k-chameleon and
dust matter are fixed and comparable, and the universe will undergo
a power-law accelerated expansion. One can adjust the model so that the {\bf K}
attractor do not appear. Thus, the k-chameleon model provides a natural
solution to the cosmological coincidence problem.Comment: Revtex, 17 pages; v2: 18 pages, two figures, more comments and
references added, to appear in PRD, v3: published versio
Phenomenological theory of a scalar electronic order: application to skutterudite PrFe4P12
By phenomenological Landau analysis, it is shown that a scalar order
parameter with the point-group symmetry explains most properties
associated with the phase transition in PrFeP at 6.5 K. The
scalar-order model reproduces magnetic and elastic properties in
PrFeP consistently such as (i) the anomaly of the magnetic
susceptibility and elastic constant at the transition temperature, (ii)
anisotropy of the magnetic susceptibility in the presence of uniaxial pressure,
and (iii) the anomaly in the elastic constant in magnetic field. An Ehrenfest
relation is derived which relates the anomaly of the magnetic susceptibility to
that of the elastic constant at the transition.Comment: 16 pages, 9 figure
New evidence for lack of CMB power on large scales
A digitalized temperature map is recovered from the first light sky survey
image published by the Planck team, from which an angular power spectrum is
derived. The amplitudes of the low multipoles measured from the preliminary
Planck power spectrum are significantly lower than that reported by the WMAP
team. Possible systematical effects are far from enough to explain the observed
low-l differences.Comment: 9 pages, 3 figure
A new multi-center approach to the exchange-correlation interactions in ab initio tight-binding methods
A new approximate method to calculate exchange-correlation contributions in
the framework of first-principles tight-binding molecular dynamics methods has
been developed. In the proposed scheme on-site (off-site) exchange-correlation
matrix elements are expressed as a one-center (two-center) term plus a {\it
correction} due to the rest of the atoms. The one-center (two-center) term is
evaluated directly, while the {\it correction} is calculated using a variation
of the Sankey-Niklewski \cite{Sankey89} approach generalized for arbitrary
atomic-like basis sets. The proposed scheme for exchange-correlation part
permits the accurate and computationally efficient calculation of corresponding
tight-binding matrices and atomic forces for complex systems. We calculate bulk
properties of selected transition (W,Pd), noble (Au) or simple (Al) metals, a
semiconductor (Si) and the transition metal oxide Ti with the new method
to demonstrate its flexibility and good accuracy.Comment: 17 pages, 5 figure
Toward Identification of Order Parameters in Skutterudites - a Wonderland of Strong Correlation Physics -
Current status is described toward identifying unconventional order
parameters in filled skutterudites with unique ordering phenomena. The order
parameters in PrFeP and PrRuP are discussed in relation
to associated crystalline electric field (CEF) states and angular form factors.
By phenomenological Landau analysis, it is shown that a scalar order model
explains most properties in both PrFeP and PrRuP with
very different magnetic properties. In particular, the highly anisotropic
susceptibility induced by uniaxial pressure in PrFeP is explained in
terms of two types of couplings. In the case of SmRuP, the main
order parameter at low field is identified as magnetic octupoles. A microscopic
mechanism is proposed how the dipole and octupole degrees of freedom mix under
the point group of skutterudites.Comment: To be published in Proc. International Conference on New Quantum
Phenomena in Skutterudite and Related Systems (Suppl. J. Phys. Soc. Jpn 78,
2008
Jet trails and Mach cones: The interaction of microquasars with the ISM
A sub-set of microquasars exhibit high peculiar velocity with respect to the
local standard of rest due to the kicks they receive when being born in
supernovae. The interaction between the radio plasma released by microquasar
jets from such high-velocity binaries with the ISM must lead to the production
of trails and bow shocks similar to what is observed in narrow-angle tailed
radio galaxies and pulsar wind nebulae. We present a set of numerical
simulations of this interaction that illuminate the long term dynamical
evolution and the observational properties of these microquasar bow shock
nebulae and trails. We find that this interaction always produces a structure
that consists of a bow shock, a trailing neck, and an expanding bubble. Using
our simulations to model emission, we predict that the shock surrounding the
bubble and the neck should be visible in H{\alpha} emission, the interior of
the bubble should be visible in synchrotron radio emission, and only the bow
shock is likely to be detectable in X-ray emission. We construct an analytic
model for the evolution of the neck and bubble shape and compare this model
with observations of X-ray binary SAX J1712.6-3739.Comment: 33 pages, 13 figures, 1 table; Accepted to Ap
Unquenching effects on the coefficients of the L\"uscher-Weisz action
The effects of unquenching on the perturbative improvement coefficients in
the Symanzik action are computed within the framework of L\"uscher-Weisz
on-shell improvement. We find that the effects of quark loops are surprisingly
large, and their omission may well explain the scaling violations observed in
some unquenched studies.Comment: 7 pages, 5 figures, uses revtex4; version to appear in Phys.Rev.
Electronic density of states derived from thermodynamic critical field curves for underdoped La-Sr-Cu-O
Thermodynamic critical field curves have been measured for
over the full range of carrier concentrations
where superconductivity occurs in order to determine changes in the normal
state density of states with carrier concentration. There is a substantial
window in the plane where the measurements are possible because the
samples are both thermodynamically reversible and the temperature is low enough
that vortex fluctuations are not important. In this window, the data fit
Hao-Clem rather well, so this model is used to determine and
for each temperature and carrier concentration. Using N(0) and the ratio of the
energy gap to transition temperature, , as fitting
parameters, the curves give over the
whole range of . Values of N(0) remain rather constant in the optimum-doped
and overdoped regime, but drops quickly toward zero in the underdoped regime.
- …