63 research outputs found

    The roles of ubiquitination and deubiquitination of NLRP3 inflammasome in inflammation-related diseases: A review

    Get PDF
    The inflammatory response is a natural immune response that prevents microbial invasion and repairs damaged tissues. However, excessive inflammatory responses can lead to various inflammation-related diseases, posing a significant threat to human health. The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a vital mediator in the activation of the inflammatory cascade. Targeting the hyperactivation of the NLRP3 inflammasome may offer potential strategies for the prevention or treatment of inflammation-related diseases. It has been established that the ubiquitination and deubiquitination modifications of the NLRP3 inflammasome can provide protective effects in inflammation-related diseases. These modifications modulate several pathological processes, including excessive inflammatory responses, pyroptosis, abnormal autophagy, proliferation disorders, and oxidative stress damage. Therefore, this review discusses the regulation of NLRP3 inflammasome activation by ubiquitination and deubiquitination modifications, explores the role of these modifications in inflammation-related diseases, and examines the potential underlying mechanisms

    Chinese Li Han Tropical Regions of High School Students Mental Health "Sunshine Sports" Intervention Study

    No full text
    The research randomly selected 65 Li national and 99 Han national high school students from each 3 middle schools of Haikou and Wuzhishan city in Hainan province as the research object, used scl-90 to test their mental health status, and proposed the “sunshine sports” intervention measures according to the statistical inference of the data

    Target-oriented recruitment of Clostridium to promote biohydrogen production by nano-ferrihydrite

    No full text
    In this study, the hydrogen production of anaerobic sludge was investigated through heat treatment and with enrichment of hydrogen-producing microorganisms in the presence of nano-ferrihydrite. Hydrogen production and hydrogen yield peaked at 0.97 mmol and 2.55 mol H-2/mol glucose in the batch experiment amended with nano-ferrihydrite. In contrast, no hydrogen was detected in the blank batch group without nano-ferrihydrite. Microbial community analysis based on 16S rRNA gene sequencing revealed that Clostridium (77.3%) and Bacillus (81.4%) were the dominant genera of the batch groups in the presence and absence of nano-ferrihydrite, respectively. In accordance with the community structure, acetate and butyrate were the primary end products in the batch group dominated by Clostridium, while lactate and ethanol were the main products in the batch group with primarily Bacillus. The carbon conversion efficiency was elevated by 265%, from 22.6% in the control group to 82.4% in treatment with nano-ferrihydrite. More importantly, the energy conversion efficiency markedly shifted from 21.5% under the control condition to 100.3% in the presence of nano-ferrihydrite. Subsequently, a bacterium named C. pasteurianum YC-1 with the ability to yield 2.61 mol H-2/mol glucose, was isolated in this study. The improved hydrogen generation can be attributed to nano-ferrihydrite being capable of shaping the microbial structure, altering metabolic pathways, and acting as released Fe(II) for hydrogenase synthesis and as a pH buffer. This study demonstrates that nano-ferrihydrite is an effective, green, and low-cost material to strengthen fermentation and biohydrogen production by the screening-oriented recruitment of Clostridium

    Ferrihydrite Reduction Exclusively Stimulated Hydrogen Production by Clostridium with Community Metabolic Pathway Bifurcation

    No full text
    The influence of fermentative iron reduction on hydrogen-producing metabolism is rarely studied. In this study, the benefits of dissimilatory iron reduction with respect to dark fermentation hydrogen production were exploited by adding the iron hydroxide mineral ferrihydrite to a heat-shocked consortium. The results showed that ferrihydrite reduction significantly promoted biohydrogen by reshaping the bacterial community, redirecting metabolic pathways, and stimulating bacterial growth, resulting in elevated carbon and electron conversion efficiencies. Furthermore, the mechanisms of hydrogen enhancement were illustrated. Ferrihydrite reduction exclusively enriched hydrogen producers, as most fermentative iron reducers are intimately related to hydrogen-producing ability. Ferrihydrite supplementation efficiently regulated the release of ferrous needed for hydrogenase or ferredoxin, and ferrihydrite reduction protected against system acidification due to organic acid accumulation. Although only approximately 3% of the reducing equivalents obtained from the substrate shifted to ferrihydrite reduction, iron reduction distinctly benefited the fermentation hydrogen-producing metabolism. The current study is expected to provide basic and engineering data for the bioreactor design of practical bioprocesses aimed at stable and prolonged hydrogen production from sustainable or waste biomass

    Respiratory electrogen Geobacter boosts hydrogen production efficiency of fermentative electrotroph Clostridium pasteurianum

    No full text
    Electrogens and electrotrophs are microorganisms that generate and consume electricity in a bioelectrochemical system, respectively. However, the influence of respiratory electrogen Geobacter on the hydrogen production efficiency of fermentative electrotroph Clostridium pasteurianum remains unclear. Herein, cocultures with Geo-bacter sulfurreducens and C. pasteurianum were successfully established during glucose fermentation. Compared with those in C. pasteurianum monoculture alone, the maximum rate and yield of hydrogen production in the coculture increased by 122.2% and 28.92%, respectively. Meanwhile, substrate conversation efficiency elevated by 50.6%. The acetic and butyric acid fermentation pathways in the cocultures were also promoted relative to those in the monoculture. Carbon and electron balance analysis also unraveled that acetate production in syn-trophic coculture accounted for approximately-two times more carbon and electron contributions than that in the monoculture. A direct manner mediated by pili-like structures or cell contacts was built between the two elec-troactive bacteria during the electric syntropy. Extracellular electron inputting from G. sulfurreducens shifted the fermentative pattern of C. pasteurianum, which resulted in an enhanced acetic acid fermentation pathway accompanied by a higher hydrogen yield. These findings provide new insights into electric syntrophy between respiratory electrogenic G. sulfurreducens and fermentative electrotrophic C. pasteurianum. A new strategy for hydrogen enhancement by coculturing hydrogen-producing electrotrophic bacteria with electrogenic microor-ganisms is also explored

    Gold recovery from E-waste using freestanding nanopapers of cellulose and ionic covalent organic frameworks

    No full text
    The ever-increasing production of electronic devices generates a huge amount of electronic waste (E-waste). Therefore, there is an urgent need for advanced recycling technology for E-waste that provides both economic and environmental benefits. Herein, we describe the preparation of flexible, freestanding CF-COF nanopapers consisting of cellulose fibers (CFs) and guanidinium-based ionic covalent organic framework (COF) that can be used for recovering gold from E-waste leaching solutions via a membrane separation technique. Due to the synergetic effects of physical adsorption, ion exchange and chemical reduction, the COF has an extremely high capture capacity (up to 1,794 mg of Au per gram of COF), is highly selective and has fast kinetics for adsorbing trace amounts of [AuCl4]â\u88\u92 in aqueous solution. The high COF loadings (â\u88Œ50 wt%) and hierarchical porosity of the CF-COF nanopapers resulted in excellent performance when capturing gold species from the E-waste leaching solution. This study provides new possibilities for developing sustainable membrane materials, and highly efficient and cost-effective techniques for the recovery of precious metals from E-waste
    • …
    corecore