58 research outputs found

    Deformation and Failure Behavior of Wooden Sandwich Composites with Taiji Honeycomb Core under a Three-Point Bending Test

    Get PDF
    A new type of Taiji honeycomb structure bonded outside with wood-based laminates was characterized from a mechanical standpoint. Both theoretical and experimental methods were employed to analyze comprehensively the deformation behavior and failure mechanism under a three-point bending test. The analytical analysis reveals that a Taiji honeycomb has 3.5 times higher strength in compression and 3.44 times higher strength in shear compared with a traditional hexagonal honeycomb. Considering the strength-weight issue, the novel structure also displays an increase in compression strength of 1.75 times and shear strength of 1.72 times. Under a three-point bending test, indentation and core shear failure played the dominant role for the total failure of a wooden sandwich with Taiji honeycomb core. Typical face yield was not observed due to limited thickness-span ratio of specimens. Large spans weaken the loading level due to the contribution of global bending stress in the compressive skin to indentation failure. A set of analytical equations between mechanical properties and key structure parameters were developed to accurately predict the threshold stresses corresponding to the onset of those deformation events, which offer critical new knowledge for the rational structure design of wooden sandwich composites

    An improved mixture of probabilistic PCA for nonlinear data-driven process monitoring

    Get PDF
    An improved mixture of probabilistic principal component analysis (PPCA) has been introduced for nonlinear data-driven process monitoring in this paper. To realize this purpose, the technique of a mixture of probabilistic principal component analyzers is utilized to establish the model of the underlying nonlinear process with local PPCA models, where a novel composite monitoring statistic is proposed based on the integration of two monitoring statistics in modified PPCA-based fault detection approach. Besides, the weighted mean of the monitoring statistics aforementioned is utilized as a metrics to detect potential abnormalities. The virtues of the proposed algorithm are discussed in comparison with several unsupervised algorithms. Finally, Tennessee Eastman process and an autosuspension model are employed to demonstrate the effectiveness of the proposed scheme further

    Process monitoring based on orthogonal locality preserving projection with maximum likelihood estimation

    Get PDF
    By integrating two powerful methods of density reduction and intrinsic dimensionality estimation, a new data-driven method, referred to as OLPP-MLE (orthogonal locality preserving projection-maximum likelihood estimation), is introduced for process monitoring. OLPP is utilized for dimensionality reduction, which provides better locality preserving power than locality preserving projection. Then, the MLE is adopted to estimate intrinsic dimensionality of OLPP. Within the proposed OLPP-MLE, two new static measures for fault detection TOLPP2 and SPEOLPP are defined. In order to reduce algorithm complexity and ignore data distribution, kernel density estimation is employed to compute thresholds for fault diagnosis. The effectiveness of the proposed method is demonstrated by three case studies

    Compression Properties and Its Prediction of Wood-Based Sandwich Panels with a Novel Taiji Honeycomb Core

    No full text
    The transverse compression property is one of most important aspects of the mechanical performance of a sandwich structure with a soft core. An experiment, analytical method and three digital strain measurement systems were applied to investigate the compression behavior and the failure mechanism for a wood-based sandwich structure with a novel Taiji honeycomb core. The results show that the structure of the Taiji honeycomb can improve dramatically on compression strength and modulus of composite compared to that of a traditional hexagonal one. There was no obvious deflection in the transverse direction detected by the three digital images before the buckling of the honeycomb occurred. An analytical equation between the key structure parameters and properties of the composite were applied to predict its threshold stresses and modulus. The properties of the core determine the strength of the entire structure, but the compression strength decreases slightly with an elevated core thickness, and its effect on the compression modulus can be neglected. Both the surface sheets and loading speed have little impact on the compression strength and modulus, respectively

    Calculating Elastic Constants of Binderless Bamboo-Wood Sandwich Composite

    No full text
    Bending and shear stiffness, which are used as deformation resistance indexes, are very important mechanical properties of bamboo-wood sandwich composites. Thus, a new methodology to calculate the elastic constants of this type of material was proposed in this paper. First, the elastic constants of the composites were derived based on composite mechanics. In particular, the equivalent shear stiffness and modulus were determined by the energy method. Then, the three-point bending test and a revised three-point bending test were used to verify the accuracy of the theoretical model, which uses the properties of the skin and core layers as its input parameters. The model was subsequently evaluated. The results show that, generally, the predicted values were slightly smaller than the test results for the same bamboo-wood composite because of the strengthening of the wood veneer after hot-pressing

    Deformation and Failure Behavior of Wooden Sandwich Composites with Taiji Honeycomb Core under a Three-Point Bending Test

    Get PDF
    A new type of Taiji honeycomb structure bonded outside with wood-based laminates was characterized from a mechanical standpoint. Both theoretical and experimental methods were employed to analyze comprehensively the deformation behavior and failure mechanism under a three-point bending test. The analytical analysis reveals that a Taiji honeycomb has 3.5 times higher strength in compression and 3.44 times higher strength in shear compared with a traditional hexagonal honeycomb. Considering the strength-weight issue, the novel structure also displays an increase in compression strength of 1.75 times and shear strength of 1.72 times. Under a three-point bending test, indentation and core shear failure played the dominant role for the total failure of a wooden sandwich with Taiji honeycomb core. Typical face yield was not observed due to limited thickness-span ratio of specimens. Large spans weaken the loading level due to the contribution of global bending stress in the compressive skin to indentation failure. A set of analytical equations between mechanical properties and key structure parameters were developed to accurately predict the threshold stresses corresponding to the onset of those deformation events, which offer critical new knowledge for the rational structure design of wooden sandwich composites
    corecore