43 research outputs found

    Genetic characterization and linkage disequilibrium mapping of resistance to gray leaf spot in maize (Zea mays L.)

    Get PDF
    AbstractGray leaf spot (GLS), caused by Cercospora zeae-maydis, is an important foliar disease of maize (Zea mays L.) worldwide, resistance to which is controlled by multiple quantitative trait loci (QTL). To gain insights into the genetic architecture underlying the resistance to this disease, an association mapping population consisting of 161 inbred lines was evaluated for resistance to GLS in a plant pathology nursery at Shenyang in 2010 and 2011. Subsequently, a genome-wide association study, using 41,101 single-nucleotide polymorphisms (SNPs), identified 51 SNPs significantly (P<0.001) associated with GLS resistance, which could be converted into 31 QTL. In addition, three candidate genes related to plant defense were identified, including nucleotide-binding-site/leucine-rich repeat, receptor-like kinase genes similar to those involved in basal defense. Two genic SNPs, PZE-103142893 and PZE-109119001, associated with GLS resistance in chromosome bins 3.07 and 9.07, can be used for marker-assisted selection (MAS) of GLS resistance. These results provide an important resource for developing molecular markers closely linked with the target trait, enhancing breeding efficiency

    Detection of copy number variations in rice using array-based comparative genomic hybridization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number variations (CNVs) can create new genes, change gene dosage, reshape gene structures, and modify elements regulating gene expression. As with all types of genetic variation, CNVs may influence phenotypic variation and gene expression. CNVs are thus considered major sources of genetic variation. Little is known, however, about their contribution to genetic variation in rice.</p> <p>Results</p> <p>To detect CNVs, we used a set of NimbleGen whole-genome comparative genomic hybridization arrays containing 718,256 oligonucleotide probes with a median probe spacing of 500 bp. We compiled a high-resolution map of CNVs in the rice genome, showing 641 CNVs between the genomes of the rice cultivars 'Nipponbare' (from <it>O. sativa </it>ssp. <it>japonica</it>) and 'Guang-lu-ai 4' (from <it>O. sativa </it>ssp. <it>indica</it>). The CNVs identified vary in size from 1.1 kb to 180.7 kb, and encompass approximately 7.6 Mb of the rice genome. The largest regions showing copy gain and loss are of 37.4 kb on chromosome 4, and 180.7 kb on chromosome 8. In addition, 85 DNA segments were identified, including some genic sequences. Contracted genes greatly outnumbered duplicated ones. Many of the contracted genes corresponded to either the same genes or genes involved in the same biological processes; this was also the case for genes involved in disease and defense.</p> <p>Conclusion</p> <p>We detected CNVs in rice by array-based comparative genomic hybridization. These CNVs contain known genes. Further discussion of CNVs is important, as they are linked to variation among rice varieties, and are likely to contribute to subspecific characteristics.</p

    Analysis of Factors Affecting Field Applicability and Long-Term Performance Analysis of LCP Woven Geotextile for Soft Ground Reinforcement

    No full text
    In recent years, natural disasters have been increasing worldwide due to rapid climate change, and the damage to ground structures is increasing due to the destruction of the ground. Damage to the ground structure can be reduced or eliminated by using LCP woven geotextiles as ground reinforcement. Therefore, in this study, the tensile properties, reduction factor affecting long-term performance, creep behavior, and fatigue properties of LCP woven geotextile were tested and analyzed. As a result, in the case of tensile properties, the maximum tensile strength of the LCP woven geotextile was 192.94 kN/m2 in the MD direction, and it was generally constructed so that the load was transmitted. The total reduction factor is 1.86, which could be applied within 53.8% of the design strength when applied to the field. In addition, it was considered that the effect of the reduction factor for creep deformation on the long-term performance was dominant. Through the analysis of the creep behavior and fatigue characteristics, considering that the creep limit strain was 10%, if an earthquake occurred after 50 years of construction, it can be predicted that up to 90% of UTS would exhibit seismic performance. When LCP woven geotextile was applied as reinforcement, if the cyclic load due to fatigue failure was less than 478,000 times per year, it was considered that there was little possibility of the collapse of the ground structure

    Junction Properties Interpretation of Textile Geogrids Using Multi-Junction Clamp

    No full text
    In this paper, multi-junction clamp was used for junction strength evaluation under 20, 50 and 100 mm/min of strain rate at ambient condition. One~eight rib specimens were gripped in the clamps and each gage length was 50 mm, 100 mm and 150 mm, respectively. Warp knitted and woven type geogrids were used to compare the effects of multi-junction clamping on junction and tensile strength, respectively. The results indicate that junction strength decreased while the number of junctions increased. When the strain rate was increased, junction strength of woven type increased, but there was no effect of strain rate on warp knitted type. The newly designed clamp test for geogrid junction strength in this research is more accurate than the single-junction test, considering the scale effect of specimens

    Molecular Modeling and MM-PBSA Free Energy Analysis of Endo-1,4-β-Xylanase from Ruminococcus albus 8

    No full text
    Endo-1,4-β-xylanase (EC 3.2.1.8) is the enzyme from Ruminococcus albus 8 (R. albus 8) (Xyn10A), and catalyzes the degradation of arabinoxylan, which is a major cell wall non-starch polysaccharide of cereals. The crystallographic structure of Xyn10A is still unknown. For this reason, we report a computer-assisted homology study conducted to build its three-dimensional structure based on the known sequence of amino acids of this enzyme. In this study, the best similarity was found with the Clostridium thermocellum (C. thermocellum) N-terminal endo-1,4-β-d-xylanase 10 b. Following the 100 ns molecular dynamics (MD) simulation, a reliable model was obtained for further studies. Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) methods were used for the substrate xylotetraose having the reactive sugar, which was bound in the −1 subsite of Xyn10A in the 4C1 (chair) and 2SO (skew boat) ground state conformations. According to the simulations and free energy analysis, Xyn10A binds the substrate with the −1 sugar in the 2SO conformation 39.27 kcal·mol−1 tighter than the substrate with the sugar in the 4C1 conformation. According to the Xyn10A-2SO Xylotetraose (X4(sb) interaction energies, the most important subsite for the substrate binding is subsite −1. The results of this study indicate that the substrate is bound in a skew boat conformation with Xyn10A and the −1 sugar subsite proceeds from the 4C1 conformation through 2SO to the transition state. MM-PBSA free energy analysis indicates that Asn187 and Trp344 in subsite −1 may an important residue for substrate binding. Our findings provide fundamental knowledge that may contribute to further enhancement of enzyme performance through molecular engineering

    Genetic Basis Dissection for Eating and Cooking Qualities of Japonica Rice in Northeast China

    No full text
    The japonica rice in Northeast China is famous because of its high quality. Eating and cooking qualities (ECQs) are the most important factors that determine cooked rice quality. However, the genetic basis of ECQ of japonica varieties in Northeast China needs further study. In this study, 200 japonica varieties that are widely distributed in Northeast China were collected to evaluate the physicochemical indices of grain ECQs. The distribution of each trait was concentrated without large variations. Correlation analysis indicated that gel consistency (GC) had a significantly negative correlation with gelatinization temperature (GT). By integrating various analyses including kinship calculation, principal component analysis (PCA), linkage disequilibrium (LD) analysis, and original parent investigation, we found that the japonica varieties in Northeast China exhibited a narrow genetic basis. An association study for grain ECQs was performed and eight quantitative trait loci (QTLs) were detected. ALK was the major locus that regulated GT and also significantly affecting GC. Through the linkage disequilibrium (LD) and expression pattern analysis, one possible candidate gene (LOC_Os02g29980) was predicted and required further research for validation. Additionally, a different allele of Wx was identified in the variety CH4126, and ALK was not fixed in these japonica varieties. These results further elucidate the genetic basis of ECQs of japonica varieties in Northeast China and provide local breeders some assistance for improving ECQs of rice grain in rice breeding

    Development of novel microsatellite markers for the BBCC Oryza genome (Poaceae) using high-throughput sequencing technology.

    No full text
    Wild species of Oryza are extremely valuable sources of genetic material that can be used to broaden the genetic background of cultivated rice, and to increase its resistance to abiotic and biotic stresses. Until recently, there was no sequence information for the BBCC Oryza genome; therefore, no special markers had been developed for this genome type. The lack of suitable markers made it difficult to search for valuable genes in the BBCC genome. The aim of this study was to develop microsatellite markers for the BBCC genome. We obtained 13,991 SSR-containing sequences and designed 14,508 primer pairs. The most abundant was hexanuclelotide (31.39%), followed by trinucleotide (27.67%) and dinucleotide (19.04%). 600 markers were selected for validation in 23 accessions of Oryza species with the BBCC genome. A set of 495 markers produced clear amplified fragments of the expected sizes. The average number of alleles per locus (Na) was 2.5, ranging from 1 to 9. The genetic diversity per locus (He) ranged from 0 to 0.844 with a mean of 0.333. The mean polymorphism information content (PIC) was 0.290, and ranged from 0 to 0.825. Of the 495 markers, 12 were only found in the BB genome, 173 were unique to the CC genome, and 198 were also present in the AA genome. These microsatellite markers could be used to evaluate the phylogenetic relationships among different Oryza genomes, and to construct a genetic linkage map for locating and identifying valuable genes in the BBCC genome, and would also for marker-assisted breeding programs that included accessions with the AA genome, especially Oryza sativa
    corecore