171 research outputs found

    Impact of vaccination on the COVID-19 pandemic in U.S. states

    Get PDF
    Governments worldwide are implementing mass vaccination programs in an effort to end the novel coronavirus (COVID-19) pandemic. Here, we evaluated the effectiveness of the COVID-19 vaccination program in its early stage and predicted the path to herd immunity in the U.S. By early March 2021, we estimated that vaccination reduced the total number of new cases by 4.4 million (from 33.0 to 28.6 million), prevented approximately 0.12 million hospitalizations (from 0.89 to 0.78 million), and decreased the population infection rate by 1.34 percentage points (from 10.10 to 8.76%). We built a Susceptible-Infected-Recovered (SIR) model with vaccination to predict herd immunity, following the trends from the early-stage vaccination program. Herd immunity could be achieved earlier with a faster vaccination pace, lower vaccine hesitancy, and higher vaccine effectiveness. The Delta variant has substantially postponed the predicted herd immunity date, through a combination of reduced vaccine effectiveness, lowered recovery rate, and increased infection and death rates. These findings improve our understanding of the COVID-19 vaccination and can inform future public health policies

    Endogenous cross-region human mobility and pandemics

    Get PDF
    We study infectious diseases using a Susceptible-Infected-Recovered-Deceased model with endogenous cross-region human mobility. Individuals weigh the risk of infection against economic opportunities when moving across regions. The model predicts that the mobility rate of susceptible individuals declines with a higher infection rate at the destination. With cross-region mobility, a decrease in the transmission rate or an increase in the removal rate of the virus in any region reduces the global basic reproduction number (R0). Global R0 falls between the minimum and maximum of local R0s. A new method of Normalized Hat Algebra is developed to solve the model dynamics. Simulations indicate that a decrease in global R0 does not always imply a lower cumulative infection rate. Local and central governments may prefer different mobility control policies

    Qi standard metasurface for free-positioning and multi-device supportive wireless power transfer

    Full text link
    Free-positioning and multi-user supportive wireless power transfer systems represent the next-generation technology for wireless charging under the Qi standard. Traditional approaches employ multiple transmitting coils and multi-channel driving circuits with active control algorithms to achieve these goals. However, these traditional approaches are significantly limited by cost, weight, and heating due to their relatively low efficiency. Here, we demonstrate an innovative approach by using a metasurface to achieve free-positioning and multi-user compatibility. The metasurface works as a passive device to reform the magnetic field and enables high-efficiency free-positioning wireless power transfer with only a single transmitting coil. It shows up to 4.6 times improvement in efficiency. The metasurface also increases the coverage area from around 5 cm by 5 cm with over 40% efficiency to around 10 cm by 10 cm with over 70% efficiency. We further show that the system can support multiple receivers. Besides increasing the overall efficiency, we demonstrate tuning the power division between the multiple receivers, enabling compensation of receivers of different sizes to achieve their desired power

    DeepWSD: Projecting Degradations in Perceptual Space to Wasserstein Distance in Deep Feature Space

    Full text link
    Existing deep learning-based full-reference IQA (FR-IQA) models usually predict the image quality in a deterministic way by explicitly comparing the features, gauging how severely distorted an image is by how far the corresponding feature lies from the space of the reference images. Herein, we look at this problem from a different viewpoint and propose to model the quality degradation in perceptual space from a statistical distribution perspective. As such, the quality is measured based upon the Wasserstein distance in the deep feature domain. More specifically, the 1DWasserstein distance at each stage of the pre-trained VGG network is measured, based on which the final quality score is performed. The deep Wasserstein distance (DeepWSD) performed on features from neural networks enjoys better interpretability of the quality contamination caused by various types of distortions and presents an advanced quality prediction capability. Extensive experiments and theoretical analysis show the superiority of the proposed DeepWSD in terms of both quality prediction and optimization.Comment: ACM Multimedia 2022 accepted thesi

    Research on prognostic risk assessment model for acute ischemic stroke based on imaging and multidimensional data

    Get PDF
    Accurately assessing the prognostic outcomes of patients with acute ischemic stroke and adjusting treatment plans in a timely manner for those with poor prognosis is crucial for intervening in modifiable risk factors. However, there is still controversy regarding the correlation between imaging-based predictions of complications in acute ischemic stroke. To address this, we developed a cross-modal attention module for integrating multidimensional data, including clinical information, imaging features, treatment plans, prognosis, and complications, to achieve complementary advantages. The fused features preserve magnetic resonance imaging (MRI) characteristics while supplementing clinical relevant information, providing a more comprehensive and informative basis for clinical diagnosis and treatment. The proposed framework based on multidimensional data for activity of daily living (ADL) scoring in patients with acute ischemic stroke demonstrates higher accuracy compared to other state-of-the-art network models, and ablation experiments confirm the effectiveness of each module in the framework

    A Survey on Visual Mamba

    Get PDF
    State space models (SSM) with selection mechanisms and hardware-aware architectures, namely Mamba, have recently shown significant potential in long-sequence modeling. Since the complexity of transformers’ self-attention mechanism is quadratic with image size, as well as increasing computational demands, researchers are currently exploring how to adapt Mamba for computer vision tasks. This paper is the first comprehensive survey that aims to provide an in-depth analysis of Mamba models within the domain of computer vision. It begins by exploring the foundational concepts contributing to Mamba’s success, including the SSM framework, selection mechanisms, and hardware-aware design. Then, we review these vision Mamba models by categorizing them into foundational models and those enhanced with techniques including convolution, recurrence, and attention to improve their sophistication. Furthermore, we investigate the widespread applications of Mamba in vision tasks, which include their use as a backbone in various levels of vision processing. This encompasses general visual tasks, medical visual tasks (e.g., 2D/3D segmentation, classification, image registration, etc.), and remote sensing visual tasks. In particular, we introduce general visual tasks from two levels: high/mid-level vision (e.g., object detection, segmentation, video classification, etc.) and low-level vision (e.g., image super-resolution, image restoration, visual generation, etc.). We hope this endeavor will spark additional interest within the community to address current challenges and further apply Mamba models in computer vision

    Genome-Wide Association Study for Plant Height and Grain Yield in Rice under Contrasting Moisture Regimes

    Get PDF
    Drought is one of the vitally critical environmental stresses affecting both growth and yield potential in rice. Drought resistance is a complicated quantitative trait that is regulated by numerous small effect loci and hundreds of genes controlling various morphological and physiological responses to drought. For this study, 270 rice landraces and cultivars were analyzed for their drought resistance. This was done via determination of changes in plant height and grain yield under contrasting water regimes, followed by detailed identification of the underlying genetic architecture via genome-wide association study (GWAS). We controlled population structure by setting top two eigenvectors and combining kinship matrix for GWAS in this study. Eighteen, five, and six associated loci were identified for plant height, grain yield per plant, and drought resistant coefficient, respectively. Nine known functional genes were identified, including five for plant height (OsGA2ox3, OsGH3-2, sd-1, OsGNA1 and OsSAP11/OsDOG), two for grain yield per plant (OsCYP51G3 and OsRRMh) and two for drought resistant coefficient (OsPYL2 and OsGA2ox9), implying very reliable results. A previous study reported OsGNA1 to regulate root development, but this study reports additional controlling of both plant height and root length. Moreover, OsRLK5 is a new drought resistant candidate gene discovered in this study. OsRLK5 mutants showed faster water loss rates in detached leaves. This gene plays an important role in the positive regulation of yield-related traits under drought conditions. We furthermore discovered several new loci contributing to the three investigated traits (plant height, grain yield, and drought resistance). These associated loci and genes significantly improve our knowledge of the genetic control of these traits in rice. In addition, many drought resistant cultivars screened in this study can be used as parental genotypes to improve drought resistance of rice by molecular breeding

    Head and Neck Cancer Tumor Segmentation Using Support Vector Machine in Dynamic Contrast-Enhanced MRI

    Get PDF
    Objective. We aimed to propose an automatic method based on Support Vector Machine (SVM) and Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to segment the tumor lesions of head and neck cancer (HNC). Materials and Methods. 120 DCE-MRI samples were collected. Five curve features and two principal components of the normalized time-intensity curve (TIC) in 80 samples were calculated as the dataset in training three SVM classifiers. The other 40 samples were used as the testing dataset. The area overlap measure (AOM) and the corresponding ratio (CR) and percent match (PM) were calculated to evaluate the segmentation performance. The training and testing procedure was repeated for 10 times, and the average performance was calculated and compared with similar studies. Results. Our method has achieved higher accuracy compared to the previous results in literature in HNC segmentation. The average AOM with the testing dataset was 0.76 ± 0.08, and the mean CR and PM were 79 ± 9% and 86 ± 8%, respectively. Conclusion. With improved segmentation performance, our proposed method is of potential in clinical practice for HNC
    • …
    corecore