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Abstract 
We study infectious diseases using a Susceptible-Infected-Recovered-Deceased model with 
endogenous cross-region human mobility. Individuals weigh the risk of infection against economic 
opportunities when moving across regions. The model predicts that the mobility rate of susceptible 
individuals declines with a higher infection rate at the destination. With cross-region mobility, a 
decrease in the transmission rate or an increase in the removal rate of the virus in any region reduces 
the global basic reproduction number (R0). Global R0 falls between the minimum and maximum of 
local R0s. A new method of Normalized Hat Algebra is developed to solve the model dynamics. 
Simulations indicate that a decrease in global R0 does not always imply a lower cumulative infection 
rate. Local and central governments may prefer different mobility control policies. 
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1 Introduction

The 2019 novel coronavirus (COVID-19) pandemic has caused huge loss of life worldwide
and plunged the global economy into a deep recession. Depending on the effect of in-
terventions, there is a real possibility that the pandemic could last until 2025 (Kissler et
al., 2020). Although containment policies have slowed the spread of the virus (Hsiang et
al., 2020; Maier and Brockmann, 2020), they have also caused substantial disruptions in
global air traffic (ICAO, 2020). Reopening national borders for travel while safeguarding
lives from the pandemic will remain a critical policy issue in the coming years.

We develop a framework to study infectious diseases with endogenous cross-region
mobility. We consider the interactions between human mobility and epidemiological dy-
namics in a multi-region Susceptible-Infected-Recovered-Deceased (SIRD) model. This
model embeds two key mechanisms from the epidemiology and economic geography liter-
ature. First, contact between susceptible and infected people with mobility will transmit
the virus both within the same region and across regions. Second, individuals consider
factors that determine their welfare at destinations when making the mobility decision,
including the probability of infection, recovery, and death. We show that these two mech-
anisms have important implications for the development of the pandemic and human
mobility. Human mobility also responds to infectious diseases, which in turn reshapes the
spread of the disease across space.

We motivate these two key mechanisms by presenting evidence using data from the
US. To measure human mobility, we use anonymous smartphone user location data to
construct state-to-state mobility flows at a biweekly frequency (Couture et al., 2021).
Combining mobility data with state-level epidemiological and containment policy data for
COVID-19, we establish two stylized facts using reduced-form econometric tools. First,
higher mobility inflows from states with more cases of infection are associated with in-
creases in local cases. We regress the number of new local cases on the average mobility
inflows from other states weighted by the number of cases in the states of origin. We
find a significant positive association, conditional on the stringency of local containment
policies and state and time fixed effects. Second, a higher local infection rate is associ-
ated with lower mobility inflows from other states. The findings are similar whether we
examine state-to-state level mobility flows or state-level aggregate net inflows. We also
use a difference-in-differences strategy and find that states with higher cumulative infec-
tion rates had significantly lower net inflows after the March 2020 national emergency
declaration.

Next, we build an SIRD model with endogenous cross-region mobility. In our model,
contact between susceptible and infected individuals can generate new infections regard-
less of the origin of the infected individuals. Susceptible individuals weigh the risk of
infection and economic opportunities across regions when choosing their optimal location
for the next period. Using tools developed in the discrete choice and migration literature
(Anderson et al., 1992; Artuç, et al., 2010; Caliendo et al., 2019), we derive the time-
varying mobility rate for each type of individual. Consistent with the stylized fact, we
show that susceptible individuals’ mobility rate declines with a higher infection rate at
their destination. In other words, they avoid moving to high-risk areas. Furthermore,
they are the key drivers of mobility variations over time. We then analyze the properties
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of the basic reproduction number, the expected number of susceptible people infected by
an infected person when almost everyone is susceptible. Following Antràs et al. (2020),
we call this number global R0 in our environment with multiple regions. We show that
global R0 falls between the maximum and minimum of local R0s, the basic reproduction
number of a region under mobility autarky. We also prove that global R0 declines when-
ever the virus has a lower transmission rate or higher removal rate in any region, provided
cross-region mobility occurs.

We also use the model to study the effect of mobility costs on global R0 and the cu-
mulative infection rate using numerical simulations. Unfortunately, existing quantitative
methods to solve mobility models, such as “Exact Hat Algebra” (Deckle et al., 2007) and
“Dynamic Hat Algebra” (Caliendo et al., 2019), do not work for our model. The key hur-
dle is that the rate at which susceptible individuals become infected is endogenous to the
distribution of individuals in the area and varies over time. To overcome this difficulty,
we develop a new method called “Normalized Hat Algebra,” which normalizes the model
equations according to their corresponding steady-state equations. Although this method
requires us to know the steady-state values, it enables us to compute the transitional
dynamics and conduct counterfactual simulations along the transitional path.

Using Normalized Hat Algebra, we simulate a calibrated three-region economy and
obtain the following findings. First, we find that susceptible individuals are the main
drivers of mobility dynamics. This is because that other individuals (infected, recovered,
or deceased) do not respond to changes in infection risk. Second, a central government
prioritizing the global cumulative infection rate should adopt contingent mobility control.
A universal decrease in cross-region mobility costs does not necessarily increase the cu-
mulative infection rate, which depends on the origin of the pandemic. For example, if the
pandemic originates from a region with the highest local R0, decreasing mobility costs
induces more individuals to move to other regions with lower local R0, which reduces the
global cumulative infection rate. In contrast, if the pandemic originates in the region with
the lowest local R0, decreasing cross-region mobility costs increases the global cumulative
infection rate. Third, local governments prioritizing local cumulative infection rates may
prefer different mobility policies than those preferred by the central government. At the
local level, increasing cross-region mobility costs reduce the local cumulative infection
rate. When the central government wants to lower mobility friction, its interests can
conflict with those of local governments.

The first contribution of our paper is to the field of epidemiological models (Kermack
and McKendrick, 1927). Studies show that human mobility contributed to the spread of
SARS-CoV-2 across Chinese cities (Fang et al., 2020), US counties (Xiong et al., 2020)
and large cities (Glaeser et al., 2022), and Italian provinces (Valsecchi and Durante, 2021).
We confirm these findings using smartphone user data capturing US interstate mobility.
Spatial friction also has important implications in SIRD models (Adda, 2016; Bartlett,
1956; Fajgelbaum et al., 2020; Muroya et al., 2013). However, human mobility is typically
not included or is assumed to follow an exogenous process in these models.1 Therefore,
they do not capture behavioral responses in mobility in the face of infection risk, which
can reduce infections even without containment policies (Fang et al., 2020; Farboodi

1For example, Fajgelbaum et al. (2021) take prepandemic commuting flows as given when studying
optimal lockdowns.

3



et al., 2021; Goolsbee and Syverson, 2021). Antràs et al. (2020) and Bisin and Moro
(2022) also consider individual behavioral responses in spatial-SIR (Susceptible-Infected-
Recovered) models and highlight the role of geographic friction in shaping the spread of
the virus. However, Antràs et al. (2020) consider interactions via international trade
without modeling the movements of people across space. Bisin and Moro (2022) focus on
within-city mobility, whereas we focus on cross-region mobility. They assume that indi-
viduals follow exogenous behavioral rules, whereas our modeled individuals optimize their
mobility choices. To the best of our knowledge, this is the first paper to jointly consider
endogenous human mobility in a multi-region SIRD model and analytically characterize
the relationship between global and local basic reproduction numbers.

Second, we contribute to the literature on non-pharmaceutical interventions during
a pandemic. By now, there is substantial evidence that these policies are effective in
flattening the epidemic curve of COVID-19 (Fang et al., 2020; Hsiang et al., 2020; Maier
and Brockmann, 2020). There are normative studies on optimal policies along various
dimensions, including quarantine and testing (Berger et al., 2020; Piguillem and Shi,
2020), lockdowns (Acemoglu et al., 2021; Alvarez et al., 2021; Fajgelbaum et al., 2021),
and general economic policies (Eichenbaum et al., 2021). Our theoretical results imply
that all local regions should implement disease control policies, and disease control in
the region with the highest local R0 should be prioritized. Provided the highest local R0

is less than 1, global R0 is less than 1 regardless of any government-imposed mobility
restraints. Our simulation results also highlight potential policy disagreements between
local and central governments, assuming that local governments aim to decrease local
cumulative infections and the central government aims to decrease global cumulative
infections. We find that although local governments prefer to increase mobility friction,
the central government prefers contingent mobility control.

Our final contribution is to the literature on quantitative economic geography (Allen
and Arkolakis, 2014; Caliendo et al., 2019; Monte et al., 2018; Redding and Rossi-
Hansberg, 2017; Tombe and Zhu, 2019). The key innovation of our model is that individ-
uals can switch types and face different mobility problems in following periods, while the
probability of switching is endogenous and depends on the distribution of individuals.2

This makes existing quantitative methods dealing with dynamic mobility models, e.g.,
Caliendo et al. (2019), unsuitable for us.3 We thus make a methodological contribution
by developing the Normalized Hat Algebra approach to solve models similar to ours.

The rest of the paper is arranged as follows. Section 2 presents the stylized facts that
motivate our model. Section 3 sets up the model and discusses the analytical results.
Section 4 introduces our Normalized Hat Algebra approach. Section 5 presents the find-
ings of our simulations using a calibrated three-region economy. Section 6 presents our
conclusions and discusses extensions of our model.

2For example, the infection rate depends on the densities of susceptible and infected individuals in
the local population (Acemoglu et al., 2021).

3Caliendo et al. (2021) extend the study by Caliendo et al. (2019) to models with multiple types of
agents. They study the mobility of workers with different but fixed skills.
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2 Motivating Stylized Facts

This section examines the empirical relationship between cross-region human mobility
and the development of the COVID-19 pandemic. We first assemble a biweekly panel
dataset for US states containing interstate mobility flows, containment policies, and epi-
demiological data for COVID-19 from January 2020 to August 2021. The details of our
data are in Appendix B.1. Next, we use reduced-form econometric tools to establish two
stylized facts on interstate mobility and the COVID-19 pandemic in the US. The details
of our empirical analyses are in Appendix B.2.

Fact 1. Higher mobility inflows from states with more cases are associated
with an increase in local cases.

When studying the impact of mobility on pandemics, an intuitive question is whether
having more people moving from states with more cases leads to an increase in local cases.
We estimate the number of newly confirmed local COVID-19 cases and exposure to the
COVID-19 pandemic in other states caused by inter-state human mobility. Exposure is
measured by the number of cases in other states weighted by prepandemic mobility shares.
Table 1 presents the results. Across all columns, we find that having incomers from states
with a higher number of cases is associated with more local cases, conditional on local
containment policies and state and time fixed effects.

Fact 2. People avoid moving to states with high infection rates.

We next study how interstate mobility responds to the COVID-19 pandemic. Our first
analysis focuses on the effect of contemporary infection rates at the origin and destination
states on the size of bilateral mobility flows, see Table 2. The dependent variable measures
the share of individuals who move from one state to another during a two-week period.
Columns (1) and (2) use the maximum daily mobility flows during a two-week period
as the dependent variable, and columns (3) and (4) use the average daily mobility flows
during the same period. Across all columns, higher contemporary infection rates at the
destination are associated with lower mobility inflows.

However, contemporary infection rates may not reflect infection risk, and bilateral
mobility flows do not capture overall population flows to a region. To solve these problems,
we then examine the effect of cumulative infection rates on total net mobility inflows. We
employ a difference-in-differences strategy with varying treatment intensity. We measure
a state’s treatment intensity using the cumulative infection rate at the end of the data
sample, on August 21, 2021. We assume that the treatment started on March 13, 2020,
when the US government declared a national emergency. Table 3 presents the results. The
dependent variable is biweekly net mobility inflows for each state. Again, columns (1)
and (2) use the maximum daily mobility flows during a two-week period, while columns
(3) and (4) use the daily average. We find that states with higher cumulative infection
rates reported larger declines in mobility inflows. This result holds when controlling for
the stringency of containment policies with state and time fixed effects. We also estimate
a specification with time-varying treatment effects, see Appendix Figure B.1. Again,
we find that mobility inflows to states with higher cumulative infection rates started to
decline after the national emergency was declared.
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3 Model

We set up a multi-region SIRD model with endogenous cross-region mobility. Individu-
als consider the risk of infection and the probability of recovery and death in different
regions when they make mobility decisions. The model assesses how mobility and disease
dynamics are determined by mobility friction and other model parameters.

3.1 Mobility, Demographic, and Disease Dynamics

Consider an economy consisting of N regions. We adopt the SIRD model (Kermack
and McKendrick, 1927) and divide the total population into four types: Susceptible (S),
Infected (I), Recovered (R), and Deceased (D). We assume that time is discrete and use
Si,t, I i,t, Ri,t, Di,t to denote the population of each type in region i at the beginning of
period t, and Si,t, Ii,t, Ri,t, Di,t the end of period t. The size of each type in each region
changes due to both the pandemic and mobility across regions.

For mobility, we follow the recent quantitative economic geography literature (Caliendo
et al., 2019; Redding and Rossi-Hansberg, 2017; Tombe and Zhu, 2019) and assume that
individuals of each type have idiosyncratic preferences for locations drawn from extreme
value distributions, an approach commonly adopted in discrete choice models (Anderson
et al., 1992). Specifically, the problem faced by type S in region i in period t can be
characterized by the following Bellman equation,

US
i,t(εi,t)= ui + max

j=1,...,N
{βEt[(1− αj,t+1)U

S
j,t+1(εj,t+1) + αj,t+1U

I
j,t+1(εj,t+1)]− µ̃ij + εij,t},

(1)
where ui is the instantaneous utility of uninfected individuals in region i, and β ∈ (0, 1)
is the discount rate. Conditional on moving to region j, with probability αj,t+1, the
individual will become infected and join type I with a value function of U I

j,t+1. With
probability 1 − αj,t+1, the individual will remain uninfected and have a value function
of US

j,t+1. Following Antràs et al. (2020) and Farboodi et al. (2021), we assume that
agents form rational expectations about αj,t+1. Although an individual is uncertain about
whether or not he/she will be infected in the next period, the aggregate risk of infection
is determined by collective decisions and taken as given by each individual. The cost
of moving from region i to region j is µ̃ij. In addition, individuals currently in region i
receive a vector of preference shocks εi,t ≡ {εi1,t, ..., εiN,t} at the end of each period with
each element εij,t following an i.i.d. Gumbel distribution

Pr {εij,t ≤ ε} = exp
{
− exp

{
−ε/κ− γEuler

}}
,

κ is a parameter that controls the dispersion of a shock and γEuler is the Euler constant
ensuring that the shock has zero mean. These shocks capture the reality that individuals
have idiosyncratic reasons for traveling to each region. After observing the preference
shock, an individual moves to the region that yields the highest utility net of the mobility
cost. Similarly, for types I and R, their value functions are given by

U I
i,t(εi,t) = uIi + max

j=1,...,N
{βEt[(1−γRj −γDj )U I

j,t+1(εj,t+1)+γRj U
R
j,t+1(εj,t+1)+γDj UD]−µ̃ij+εij,t},

(2)
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and
UR
i,t(εi,t) = ui + max

j=1,...,N
{βEt[U

R
j,t+1(εj,t+1)]− µ̃ij + εij,t}, (3)

where γR
j and γD

j are the recovery and death rates in region j, and uI
i is the instantaneous

utility of type I in region i.4 We assume that infection reduces instantaneous utility
0 < uI

i < ui. U
D is the utility of type D, which we normalize as a constant such that the

value of death is less than the value of recovery.
Solving problems (1), (2), and (3), we have the following results.

Proposition 1. The expected lifetime utility of types S, I, and R in region i at time t
can be written recursively as

V S
i,t = exp

(ui

κ

) N∑
j=1

(
V S
j,t+1

)β(1−αj,t+1) (
V I
j,t+1

)βαj,t+1
(µij)

−1 ,

V I
i,t = exp

(
uI
i

κ

) N∑
j=1

(
V I
j,t+1

)β(1−γR
j −γD

j ) (
V R
j,t+1

)βγR
j
(
V D
)γD

j (µij)
−1 , (4)

V R
i,t = exp

(ui

κ

)∑N

j=1

(
V R
j,t+1

)β
(µij)

−1 ,

where V g
i,t = exp(Et−1(U

g
i,t)/κ), g ∈ {S, I, R} and µij = exp(µ̃ij/κ), and V D = exp(UD/κ)

is the value of type D.

Proof. See Appendix A.3.1.

Equation (4) reflects that the expected lifetime utility of individuals depends on the
contemporaneous utility and value of changing regions and types in the next period. Using
the method to find choice probabilities in discrete choice models, we obtain the mobility
rate of each type of individual. The following proposition summarizes the results.

Proposition 2. The mobility rates of types S, I, and R are

mS
ij,t =

(
V S
j,t+1

)β(1−αj,t+1) (V I
j,t+1

)βαj,t+1 (µij)
−1∑N

k=1

(
V S
k,t+1

)β(1−αk,t+1)
(
V I
k,t+1

)βαk,t+1 (µik)
−1

,

mI
ij,t =

(
V I
j,t+1

)β(1−γR
j −γD

j ) (V R
j,t+1

)βγR
j
(
V D
)βγD

j (µij)
−1∑N

k=1

(
V I
k,t+1

)β(1−γR
k −γD

k ) (
V R
k,t+1

)βγR
k (V D)βγ

D
k (µik)

−1
, (5)

mR
ij,t =

(
V R
j,t+1

)β
(µij)

−1∑N
k=1

(
V R
k,t+1

)β
(µik)

−1
,

where mg
ij,t is the probability that type g moves from region i to region j in period t,

g ∈ {S, I, R}.

Proof. See Appendix A.3.2.

4To keep the model non-trivial, we assume that 0 ≤ γR
j < 1, 0 ≤ γD

j < 1, and γR
j + γD

j < 1, ∀j. If
γj = 0, ∀j, our model collapses to an SIR model.
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It is worth mentioning two differences between these expressions and existing spatial
models. First, our mobility rates can vary across types of individuals, whereas existing
spatial models typically ignore mobility heterogeneity by assuming a single type of worker
or commuter.5 Second, in addition to mobility friction, disease parameters (infection,
recovery, and death rates) directly affect the mobility rate. Individuals who can switch
types (types S and I) take into account that they might switch to other types in the
following period, whereas individuals of the terminated type R do not.

As is standard in SIRD models (Allen and den Driessche, 2008), the demographic
dynamics within a period caused by the disease are given by

Si,t = Si,t − Ti,t, Ii,t = Ti,t +
(
1− γR

i − γD
i

)
I i,t, (6)

Ri,t = Ri,t + γR
i I i,t, Di,t = Di,t + γD

i I i,t,

where Ti,t, the number of newly infected people in region i in period t, satisfies

Ti,t

Li,t

= χi
Si,t

Li,t

I i,t

Li,t

, (7)

where Li,t = Si,t + I i,t + Ri,t is the stock of living individuals and χi is the transmission
rate, the probability that the virus will transmit from type I to type S conditional on
contact between them. Given the number of newly infected individuals, the infection rate
of type S is

αit ≡
Ti,t

Si,t

. (8)

Last, the demographic dynamics across periods due to mobility are given by

Si,t =
N∑
j=1

Sj,t−1m
S
ji,t−1, I i,t =

N∑
j=1

Ij,t−1m
I
ji,t−1, (9)

Ri,t =
N∑
j=1

Rj,t−1m
R
ji,t−1, Di,t = Di,t−1.

The timing of events in the model is summarized in Figure 1.

3.2 Equilibrium

The fundamentals of our model are bilateral mobility costs µ ≡ {µij}N,N
i=1,j=1, the recovery

rate γR ≡
{
γR
i

}N
i=1

, the death rate γD ≡
{
γD
i

}N
i=1

, the transmission rate χ ≡ {χi}Ni=1, the

value of type D V D, the dispersion of the parameter of the Gumbel distribution κ, and
the discount rate β. We denote the fundamentals by Ω ≡

{
µ, γR, γD, χ, V D, κ, β

}
.

If we denote the distribution of individuals across regions byGt ≡ {Si,t, Ii,t, Ri,t, Di,t}Ni=1,

their mobility rates by mt = {mS
ij,t, mI

ij,t, mR
ij,t}

N,N
i=1,j=1 and expected lifetime utility by

Vt = {V S
i,t, V

I
i,t, V

R
i,t}Ni=1, we can define the sequential competitive equilibrium.

5A notable exception is Caliendo et al. (2021), who study the migration of workers with different skill
types. However, they continue to assume that workers do not change types.
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Definition 1. Given Ω and G0, the sequential competitive equilibrium is a sequence of
{Gt, mt, Vt}∞t=0 satisfying equations (4), (5), (6), (7), (8), and (9).

Next, we can define the steady-state equilibrium.

Definition 2. A steady-state equilibrium is a sequential competitive equilibrium such that
{Gt, mt, Vt}∞t=0 are constant over time.

Finally, following the literature on the basic reproduction number R0 (Van den Driess-
che, 2017), we define the disease-free equilibrium (DFE) as

Definition 3. A DFE is defined as the point at which the whole population is susceptible,
i.e., Si,t/Li,t = 1, ∀i.

3.3 Mobility and Infection Risk

SIRD models have analytical solutions only under certain restrictions (Harko et al., 2014).
Embedding them in an economic model with endogenous mobility makes it difficult to
obtain analytical solutions. This subsection presents analytical results regarding how
infection risk shapes individual mobility choices during the pandemic. First, given our
assumptions that instantaneous utility and mobility friction are time-invariant, we have
the following results.

Proposition 3. The value functions of types I and R are time-invariant, that is, V R
i,t =

V R
i and V I

i,t = V I
i ; so are their mobility rates, i.e., mR

ij,t = mR
ij and mI

ij,t = mI
ij.

Proof. See Appendix A.3.3.

Types I and R have both been infected. They are not concerned about the risk
of infection and do not respond to changes in infection rates. Only type S individu-
als, who have not been infected, care about the risk of infection when making mobility
choices. Therefore, this proposition implies that the dynamics of human mobility during
a pandemic are shaped mostly by type S individuals. Before discussing how susceptible
individuals respond to the risk of infection, we must rank the value function of agents.

Lemma 1. (a) V R
i > V I

i and V R
i ≥ V S

i,t; (b) Near the DFE, we have V I
i < V S

i,t+1.

Proof. See Appendix A.3.4.

Lemma 1 implies that as long as infection reduces instantaneous utility and death is
strictly dominated by recovery, the value function of type R individuals is higher than
that of types I and S. The intuition is that type I individuals might die while type S
individuals might become infected. Near the DFE, the infection rate approaches 0. Then,
the value of type S approaches the value of type R according to equation (4), which is
greater than the value of type I. Using this lemma, we obtain the following result, which
relates the risk of infection to the mobility of type S.

Proposition 4. Near the DFE, if the probability of infection in region j increases, the

mobility rate of type S to region j decreases weakly:
∂ ln(mS

ij,t)

∂αj,t+1
= (1−mS

ij,t) ln(
V I
j

V S
j,t+1

) ≤ 0.
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Proof. See Appendix A.3.5.

This result implies that type S individuals will avoid moving to regions with higher
risks of infection. This is consistent with the stylized fact established in Section 2. We
note that type S’s response is proportional to the log difference of their value function
from type I, ln(V I

j ) − ln(V S
j,t+1). The greater the welfare loss when becoming infected,

the greater the response of type S individuals to infection risk. If the welfare of type I is
the same as that of type S, i.e., V I

j = V S
j,t+1, we have ∂ ln(m

S
ij,t)/∂αj,t+1 = 0. In this case,

there is no difference in welfare whether or not one becomes infected. Type S individuals
simply do not respond to infection risk.

In addition, the magnitude of the response is proportional to the total mobility rate
to other destinations 1−mS

ij,t. When 1−mS
ij,t = 0, again we have ∂ ln(mS

ij,t)/∂αj,t+1 = 0,
because there is nowhere else to go.6 Naturally, the mobility of type S does not respond
to changes in region j’s infection risk. Otherwise, the higher the mobility rate to other
destinations, the greater the response of type S to an increase in infection risk in region
j. Our intuition is that if the mobility rate to other regions increases, other regions
become more attractive as a destination than region j. Then, if the conditions in region j
deteriorate, individuals respond more aggressively to these changes. Therefore, mobility
also shapes individuals’ response to infection risk.

3.4 Local and Global R0

The basic reproduction number, R0, is used to determine whether an emerging epidemic
can be contained. R0 measures the expected number of new infections generated by an
infected individual near the DFE (Diekmann et al., 1990). In SIRD models without
cross-region human mobility or other interactions, R0 of region i is given by

RL
0,i =

χi

γi
, (10)

which we define as local R0 in region i. In this expression, χi is the expected number of
new infections generated by an infected individual near the DFE in each period. 1/γi is
the expected duration of infection. Therefore, RL

0,i = χi/γi captures the expected number
of new infections from an infected individual during their infection. If RL

0,i > 1, the
epidemic will continue to spread in the region and die out if RL

0,i < 1.
This notion is applied to multi-group SIR models in which individuals may differ by

age, gender, or other characteristics (Allen and Van den Driessche, 2008; Diekmann et
al., 2010) or come from multiple regions (Antràs et al., 2020). We generalize the notion
of R0 to an environment with human mobility across regions.

If we combine equations (6) and (9) and use the result of Proposition 3 thatmI
ij,t = mI

ij,
the law of motion for type I can be written as:

Ii,t = χi
Si,t

Li,t

I i,t +
(
1− γR

i − γD
i

)
I i,t =

(
χi
Si,t

Li,t

+ 1− γR
i − γD

i

) N∑
j=1

mI
jiIj,t−1. (11)

6When the preference shocks follow an extreme value distribution, mS
ij,t = 1 if mobility costs to des-

tinations other than region j are infinite. If mobility costs are finite, the mobility rate to any destination
is positive.
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We follow Allen and Van den Driessche (2008) and vectorize the equation above near the

DFE (which implies that
Si,t

Li,t
= 1, ∀i) and obtain

It+1 = FIt +VIt,

where It = [I1,t, ..., IN,t]
′, and

F =


χ1

χ2

. . .

χN




mI
11 mI

21 · · · mI
N1

mI
12 mI

22 · · · mI
N2

...
...

. . .
...

mI
1N mI

2N · · · mI
NN

 ,

and

V =


1− γ1

1− γ2
. . .

1− γN




mI
11 mI

21 · · · mI
N1

mI
12 mI

22 · · · mI
N2

...
...

. . .
...

mI
1N mI

2N · · · mI
NN

 ,

where γi = γD
i + γR

i , (1 ≤ i ≤ N), is the removal rate of type I in region i. F is
the transmission matrix, which captures new infections generated by transmission. V
is the transition matrix, which captures the transition of type I to type R or D. In
our model, individuals can move from one region to another, potentially generating new
infections. This is captured by the mobility matrix m = {mI

ji}N×N , which appears in
both F and V. With F and V, we follow Allen and Van den Driessche (2008) and define
the next-generation matrix as

M =F (I−V)−1 ,

where I is an identity matrix. This is a concept borrowed from the literature on matrix
population models that examines demographic dynamics and views infection as consec-
utive generations of infected people (Caswell, 2001). M connects the number of newly
infected cases in different regions for consecutive periods. The basic reproduction number
is given by the spectral radius, the largest norm of eigenvalues, of M:

RG
0 ≡ ρ(M) ≡ max

1≤i≤N
{|Λi|}, (12)

where Λi is the eigenvalue of M. RG
0 is the global R0 of our multi-region economy.

This concept is similar to the interpretation of RL
0 in the traditional SIRD model

without cross-region mobility. First, the element on the ith row and jth column of F,
χim

I
ji, is the expected number of new cases generated by an infected individual from

region j in region i. As for V, the element on the ith row and jth column, (1 − γi)m
I
ji,

is the survival probability of type I from region j in region i. Then, the element on the
ith row and jth column of (I− V )−1 is the expected duration of infection for an infected
individual in region i who moved from region j.7 Therefore, the element on the ith row

7Let ξi be the expected duration of infection in region i and ξ = [ξ1, ..., ξN ], then ξ satisfies a recursive

relationship ξ = ι+ ξV , and ι = [1, ..., 1]1×N . Immediately, we have ξ = ι (I− V )
−1

.
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and jth column of M represents the expected number of new infections in region i as a
result of an infected individual moving from region j.

Nevertheless, the multi-region environment requires further interpretation. We con-
sider a small initial outbreak across regions near the DFE with δ0 = I0 and call it the 0-th
generation of infection. Then, the expected number of new cases directly generated by the
0-th generation is given by δ1 = Mδ0, which is the first generation of cases across regions.
In general, we can calculate the k-th generation of infection as δk = Mδk−1 = MkI0.
Clearly, the growth rate of δk is controlled by the largest norm of eigenvalues of M,
namely RG

0 .
8 We next discuss the properties of RG

0 .

Proposition 5. RG
0 falls between the minimum and maximum of local reproduction num-

bers, i.e., mini R
L
0,i ≤ RG

0 ≤ maxiR
L
0,i.

Proof. See Appendix A.3.6.

Clearly, if everyone stays in the region with the lowest RL
0 , we have RG

0 = mini R
L
0,i.

Similarly, if everyone stays in the region with the highest localR0, we have R
G
0 = maxi R

L
0,i.

In general, people can move across regions. RG
0 falls between the maximum and minimum

of local R0. Mobility becomes irrelevant for RG
0 when the disease parameters are identical

across regions. RG
0 is the same as RL

0 s as miniR
L
0,i = maxi R

L
0,i.

Proposition 5 suggests that RG
0 is bounded from above by the region with the highest

RL
0 . This has important policy implications. First, if maxi R

L
0,i < 1, we have RG

0 < 1.
Accordingly, if the pandemic can be controlled in the worst region, then allowing cross-
region mobility will not cause an outbreak given that RG

0 is also less than 1. This result
also provides the rationale for prioritizing disease control in the region with the highest
RL

0 . If the pandemic can be controlled there, it can be contained globally.
In a world with cross-region mobility, all regions matter. The next proposition suggests

that in a globalized world with cross-region mobility, improved infectious disease control
in any region contributes to global disease control.

Proposition 6. A decrease in the transmission rate χi or an increase in the removal rate
γi in any region weakly decreases global RG

0 .

Proof. See Appendix A.3.7.

Combining these two propositions, we derive two important elements of infection con-
trol. First, all local regions should implement disease control policies. Second, disease
control in the region with the highest RL

0 should be prioritized.

4 Normalized Hat Algebra

Hat Algebra is a set of methodologies for performing comparative static and counterfactual
analysis. Jones (1965) was the first to propose the use of comparative statics in trade
models by log linearization. Instead of log linearization, Dekle et al. (2007) transformed
their model in terms of changes from the current equilibrium and called their method

8We note that limk→∞
δk

ζk = limk→∞(Mζ )kI0 is finite if ζ ≥ ρ(M).
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“Exact Hat Algebra”(EHA), as it is an approach without approximation. However, EHA
can only be applied to static or steady models. Caliendo et al. (2019) extended EHA and
developed the method of “Dynamic Hat Algebra” (DHA) to solve models with intrinsic
migration dynamics. Their idea is to transform the model in terms of growth rates.
They show that this approach allows them to derive the transitional path and conduct a
counterfactual analysis along the transitional path in a class of models.

Our model does not belong to the class of models that can be solved by DHA. To
check that, we follow Caliendo et al. (2019) and rewrite the value function of type S in
terms of growth rates as follows:

V̇ S
i,t+1 =

N∑
k=1

mS
ik,t(V̇

S
k,t+2)

β(1−αk,t+2)(V̇ I
k,t+2)

βαk,t+2

(
V S
k,t+1

V I
k,t+1

)β(αk,t+1−αk,t+2)

,

where V̇ g
i,t+1 ≡

V g
i,t+1

V g
i,t

is the growth rate of the value function of type g, g ∈ {S, I}. However,
the last term in the equation, (V S

k,t+1/V
I
k,t+1)

β(αk,t+1−αk,t+2) is still expressed in terms of the
value function level and appears whenever the probability of infection fluctuates over time:
αk,t+1 ̸= αk,t+2. Because αk,t+1 captures the probability of infection, which is endogenous
and can vary over time, we cannot rewrite our model purely in terms of growth rates of
value functions, and we solve it using DHA.

To solve the problem, we develop a Normalized Hat Algebra approach by normalizing
all value functions to their corresponding steady-state value. We denote the normalized
value by x̂t = xt/xss, while xss is the steady-state of x and prove the following result.

Proposition 7. Given the initial distribution of agents, G0, and the steady state of the
economy, the solution to the sequential competitive equilibrium solves equations (6), (7),
(8), and (9), together with the following equations for all regions in all periods

V̂ S
i,t =

N∑
j=1

mS
ij,ss

(
V̂ S
j,t+1

)β(1−αj,t+1) (
V̂ I
j,t+1

)βαj,t+1

(
V I
j,ss

V S
j,ss

)βαj,t+1

,

mS
ij,t =

mS
ij,ss

(
V̂ S
j,t+1

)β(1−αj,t+1) (
V̂ I
j,t+1

)βαj,t+1
(

V I
j,ss

V S
j,ss

)βαj,t+1

∑N
k=1m

S
ik,ss

(
V̂ S
k,t+1

)β(1−αk,t+1) (
V̂ I
k,t+1

)βαk,t+1
(

V I
k,ss

V S
k,ss

)βαj,t+1
,

where mS
ij,ss is the steady-state mobility rates of type S.

Proof. See Appendix A.3.8

We note that the value functions and mobility rates of types I and R are the same
as their steady-state values given Proposition 3, i.e., V̂ I

i,t = V̂ R
i,t = 1, mI

ij,t = mI
ij,ss,

and mR
ij,t = mR

ij,ss. As for the corresponding values for type S, they contain the term

(V I
j,ss/V

S
j,ss)

βαj,t+1 . However, the problem here is much simpler because
V I
j,ss

V S
j,ss

is a constant.

This approach requires us to solve the steady-state values. The steady-state values for
types S, I, and R can be solved using equation (4) by replacing αj,ss = 0 (∀j) for given
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instantaneous utility and model fundamentals Ω. Then, the steady-state mobility rates,
mg

ij,ss, g ∈ {S, I, R}, can be computed from equation (5). The detailed algorithm of the
approach is presented in Appendix B.5.

5 Mobility, R0, and Cumulative Infection Rate

Restrictions of human mobility have been one of the most prominent anti-contagion poli-
cies implemented during the COVID-19 pandemic (Hale et al., 2021). In this section,
we investigate how mobility friction affects RG

0 and the cumulative infection rate. We
calibrate our model to a three-region economy. The model parameters are specified in
Appendix Table B.2. We assume that these three regions have the same removal rate, but
Region 1 has the lowest disease transmission rate, Region 2 the medium rate, and Region
3 the highest rate. Therefore, RL

0 values are ranked as follows: RL
0,1 < RL

0,2 < RL
0,3.

Finding 1. Type S individuals avoid moving to regions with higher infection
risk and drive the overall mobility dynamics during the pandemic.

We use the Normalized Hat Algebra approach developed in the previous section to simu-
late the model and compute the cumulative infection rate for each region. Figure 2 plots
the transitional dynamics when the pandemic originated from Region 1.9 Panel (a) shows
the number of type S individuals in each region, and Panel (f) shows their mobility rate
to Region 1 relative to the steady state. Consistent with Stylized Fact 1 and Proposi-
tion 4, type S individuals avoid moving to Region 1, the region with outbreaks and the
highest infection risk. However, as type I individuals in Region 1 recover or die (Panel
b), although the cumulative number of cases increases (Panel e), infection risk gradually
declines (Panel d), fewer type S individuals choose to move to another region, and more
type S individuals from other regions move to Region 1. Therefore, the share of type S
individuals rebounds in Region 1. Overall, Region 1’s share of type S individuals exhibits
a “V” shape, and the total population size in Region 1 shows a similar trend (Panel c).

Finding 2. A universal increase in cross-region mobility friction increases RG
0 .

We now consider how a universal rise in mobility friction affects RG
0 and the cumulative

infection rate. Figure 3 (a) plots the results.10 We find that increasing cross-region
mobility friction increases RG

0 . The intuition for this result is as follows. When the
mobility matrix is an identity matrix, i.e., m = I, there is no cross-region mobility. It is
easy to verify that RG

0 reaches the maximum RG
0 = ρ(M) = maxi{χi

γi
} using equation (12)

because type S individuals tend to move from regions with higher infection risk to regions
with lower infection risk. When mobility restrictions are relaxed, type S individuals can
move to regions with lower infection risk, which tends to reduce RG

0 . However, a lower
RG

0 is not equivalent to fewer infected people, which is our next finding.

9We assume that 1% of the population got infected in the initial period.
10To capture mobility friction, we decompose the mobility matrix as m(σ) = (1−σ)mI

ss+σI, σ ∈ [0, 1],
and mI

ss is the steady-state mobility matrix. σ controls mobility friction in a parsimonious manner. A
higher σ implies higher mobility friction. m(1) = I is the case of full isolation, as the probability of
moving to nonlocal regions is 0.
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Finding 3. Increasing RG
0 does not always increase the cumulative infection

rate.

RG
0 is difficult to calculate and cannot be directly observed. Governments may care more

about the cumulative infection rate, which is a straightforward measure of the severity
of the pandemic. Figure 3 (a) also shows that the effect of mobility friction on the
cumulative infection rate depends on the origin of the pandemic. When it originates from
the region with the highest RL

0 , Region 3, the cumulative infection rate increases with
mobility friction. The main reason is that fewer individuals move from Region 3 to other
regions with lower transmission rates when mobility costs increase. This tends to increase
overall infections. In contrast, if the pandemic originates from Region 1, the region with
the lowest RL

0 , the cumulative infection rate decreases when mobility friction increases
because people are less likely to move to regions with higher transmission rates.

Finding 4. Increasing a region’s mobility friction leads to fewer local
infections. However, increasing mobility friction in a region with low RL

0

increases the global cumulative infection rate.

So far, we have only considered universal changes in cross-region mobility friction. Now,
we consider changes in mobility friction with respect to moving in and out of a region.
Figure 3 (b) plots the results when mobility friction changes at the regional level and
outbreaks happen in all three regions.11 In all cases, reducing mobility friction with
other regions leads to more local infections. However, the global cumulative infection
rate declines if the region with the lowest RL

0 reduces its mobility friction with other
regions. This is intuitive as agents move to the region with the lowest transmission rate,
which reduces the global cumulative infection rate. In contrast, reducing mobility friction
for the region with the highest RL

0 raises overall infections. This result suggests that
if the objective of governments is to reduce the cumulative infection rate, the preferred
mobility friction policy can differ between local and central governments. Whereas local
governments always prefer to limit mobility, the central government prefers regions with
low RL

0 to relax mobility control while regions with high RL
0 to tighten mobility control.

6 Conclusion

Rapid globalization and urbanization have generated enormous gains from human mobil-
ity, but may also have led to more frequent outbreaks of infectious diseases. We develop
a theoretical framework to jointly study infectious diseases and human mobility. The
model allows us to analyze how human mobility responds to infection risk and study the
properties of global and local R0s. We enrich the existing toolboxes of spatial economies
by developing a new Normalized Hat Algebra approach, which solves the dynamic mo-
bility model with endogenous type switching. We use the calibrated model to investigate
the effects of mobility friction on R0 and the cumulative infection rate. We find some

111% of the local population is infected in each region initially. Instead of scaling the entire mobility
matrix, we scale the specific row and column associated with the inflows and outflows of a region.
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limitations of RG
0 and a potential conflict in mobility policy preferences between local and

central governments.
Our model is general and versatile. It can be extended to study relevant disease

containment policies implemented by governments. For example, vaccination programs
are effective in reducing the rate of infection (Chen et al., 2022). In Appendix B.6, we
discuss an extension of our model to incorporate vaccinations. Other components could
also be added. For example, following Redding and Rossi-Hansberg (2017), production
and interregional trade could be introduced to the model. Incorporating them could
introduce economic forces of social distancing (Antràs et al., 2020) but would not change
our model predictions about R0 and how people respond to infection risk. Future research
could build on our framework to further study epidemics and economics.
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Antràs, P., Redding, S.J., and Rossi-Hansberg, E., 2020. Globalization and pandemics
(No. w27840). National Bureau of Economic Research.
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Appendix

A.1 Figures

Figure 1: Model Timeline

Notes. This figure plots the timeline of events in each model in period t. At the beginning of

the period (after mobility in the previous period is complete), the stock of type g individuals

in region i is gi,t, g ∈ {S, I,R,D}. Next, possible infection (with probability αi,t), recovery,

and death take place. The stock of type g individuals becomes gi,t. At the end of the period,

individuals derive their idiosyncratic preference shock εi,t and make a mobility decision. The

mobility rate of type g is mg
ij,t.
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Figure 2: Epidemic and Mobility Dynamics with an Outbreak in Region 1
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Notes. This figure plots the simulation results from a calibrated three-region economy

with an initial outbreak in Region 1 (1% of the local population is infected). The model

parameters are specified in Table B.2. Panel (a) plots the stock of type S individuals relative

to the steady state in each region; Panel (b) plots the number of type I individuals; Panel

(c) plots the size of the local population relative to the steady state; and Panel (d) plots the

infection rate. Panel (e) plots the cumulative number of cases for Regions 1 (left axis), 2,

and 3 (right axis) by summing the number of new cases across all periods. Panel (f) plots

the mobility rate of type S individuals moving in and out of Region 1 relative to the steady

state.
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Figure 3: Mobility Friction, Global R0, and Cumulative Infection Rate
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(b) Regional Mobility Control

Notes. This figure plots the simulation results from a calibrated three-region economy. The

model parameters are specified in Table B.2. Panel (a) plots how universal mobility control,

which increases all cross-region mobility costs (horizontal axis), affects the global cumulative

infection rate (left axis) and RG
0 (right axis). We simulate three scenarios, with outbreaks

starting from Regions 1, 2, and 3, respectively. Panel (b) plots how global (left axis) and

local (right axis) cumulative infection rates vary with regional mobility friction (horizontal

axis) when outbreaks occur in all regions. We simulate three scenarios, with increasing

mobility friction in and out of Regions 1, 2, and 3, respectively.

22



A.2 Tables

Table 1: Interstate Mobility and the COVID-19 Pandemic in the US

(1) (2) (3) (4)
VARIABLES ln (number of new cases)∑

j ̸=im
max
ji ln(NewCasesj,t−1) 0.374***

(22.695)∑
j ̸=im

mean
ji ln(NewCasesj,t−1) 0.394***

(23.017)∑
j ̸=im

max
ji ln(CumulativeCasesj,t−1) 0.159***

(13.737)∑
j ̸=im

mean
ji ln(CumulativeCasesj,t−1) 0.171***

(13.973)
stringency indext−1 -0.004* -0.004* -0.002 -0.002

(-1.766) (-1.742) (-0.629) (-0.623)
Observations 2,040 2,040 2,040 2,040
R-squared 0.971 0.972 0.943 0.943
BiWeek FE Yes Yes Yes Yes
State FE Yes Yes Yes Yes

Notes. This table estimates the effect of interstate mobility on state-level COVID-19 cases in
the US. The dependent variable is the logarithm of the number of new cases in state i during
a two-week period. For the independent variables, we use four measures of local exposure
to outside cases caused by interstate mobility (columns 1-4). They combine two measures
of initial interstate mobility and two measures of outside cases. The two measures of initial
bilateral mobility are as follows: mmax

ji , the maximum daily mobility rate from state j to
state i during the initial two-week period; and mmean

ji , the average daily mobility rate during
the initial two-week period. Two measures of outside cases are used: ln(NewCasej,t−1) is the
logarithm of the lagged number of new cases in origin state j, and ln(CumulativeCasej,t−1)
is the logarithm of the lagged number of cumulative positive cases in origin state j. The
stringency indext−1 measures the stringency of closure policies, ranging from 0 to 100 at the
state and biweekly levels. A higher stringency index indicates stricter containment policies.
A one-period lag is used to deal with the potential endogeneity of containment policies. The
sample includes all 50 states and DC from January 2020 to August 2021 with 40 periods of
two weeks. The numbers in parentheses are robust t-statistics with standard errors two-way
clustered at the state and biweekly levels. Significance is indicated by *, **, and *** at the
0.1, 0.05 and 0.01 levels, respectively.
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Table 2: The COVID-19 Pandemic and US State-to-State Human Mobility

(1) (2) (3) (4)
VARIABLES Max mobility Average mobility
new infection rate of origin -0.940 -0.491 -0.601 -0.146

(-0.436) (-0.642) (-0.272) (-0.201)
new infection rate of destination -7.633*** -7.844*** -7.456*** -7.698***

(-3.432) (-10.862) (-3.245) (-11.085)
mobility restrictions of origin -0.048*** -0.048*** -0.048*** -0.048***

(-3.531) (-9.873) (-3.408) (-9.602)
mobility restrictions of destination -0.007 -0.008 -0.003 -0.005

(-0.448) (-1.498) (-0.201) (-0.827)
log(distance) -1.364*** -1.384***

(-271.503) (–214.016)
shared state border 1.069*** 1.100***

(95.547) (96.924)
Observations 102,000 102,000 102,000 102,000
Time FE Yes Yes Yes Yes
Origin FE Yes No Yes No
Destination FE Yes No Yes No
Origin-Destination Pair FE No Yes No Yes

Notes. This table estimates how interstate bilateral mobility flows respond to the risk of
COVID-19 infection. The main dependent variables are as follows: Max mobilityij,t, which is
the maximum daily bilateral mobility flow between a state pair within a two-week period; and
Average mobilityij,t, which is the average daily bilateral mobility flow between a state pair
within a two-week period. new infection rate of origin is measured by the number of new
cases divided by the population in the state of origin, and new infection rate of destination
is the same measure for the destination state. To deal with potential endogeneity, both
variables are lagged by one period. mobility restrictions of origin measures the stringency
of the restrictions on mobility imposed by the state of origin, and mobility restrictions
is the measure imposed by the destination state. Time-invariant gravity variables include
distance and a common border between the state of origin and the destination. The sample
includes all 2,550 state pairs in the US from January 2020 to August 2021, with 40 periods
of two weeks. Columns (2) and (4) control for Origin-Destination state pair fixed effects,
log(distance) and shared state border are absorbed from the pair fixed effects and are
not reported in the table. The equations are estimated using Poisson Pseudo Maximum
Likelihood (PPML). The numbers in parentheses are robust t-statistics with standard errors
two-way clustered at the state pair and biweekly levels. Significance is indicated by *, **,
and *** at the 0.1, 0.05, and 0.01 levels, respectively.
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Table 3: Effect of the COVID-19 Pandemic on Net Mobility inflows to US states

(1) (2) (3) (4)

VARIABLES
Share of net inflow Share of net inflow
(by max mobility) (by average mobility)

cumulative infection rate × post pandemic -0.056** -0.069** -0.032 -0.045**
(-2.039) (-2.494) (-1.524) (-2.094)

stringency index -0.010*** -0.009***
(-2.893) (-2.966)

Observations 2,040 2,040 2,040 2,040
R-squared 0.956 0.956 0.956 0.956
Biweek FE Yes Yes Yes Yes
State FE Yes Yes Yes Yes

Notes. This table estimates how state-level net mobility inflows respond to the risk of
COVID-19 infection. The main dependent variables are as follows: Share of net inflow
by max mobility, which is net inflows divided by the population at the state level, and net
inflow is calculated by aggregating the inflow (measured by the maximum daily flow within
a biweekly period) from other states, netting out outflows to other states. Share of net
inflow by average mobility is constructed similarly, except that the average daily bilateral
mobility flow is used. cumulative infection rate is computed as cumulative cases over the
total state population at the end of the sample period, the last two-week period in August
2021. post pandemic is a dummy variable taking a value of 1 after the US declared a national
emergency on March 13, 2020, or the fourth biweekly period in our time window. stringency
index illustrates the stringency of closure policies, which ranges from 0 to 100 and varies at
the state and biweekly levels. We lag this variable by one period to deal with the potential
endogeneity of containment policies. A higher value of Stringency Index indicates stricter
containment policies. The sample includes all 50 states and DC from January 2020 to August
2021 with 40 periods of two weeks. The numbers in parentheses are robust t-statistics with
standard errors two-way clustered at the state and biweekly levels. Significance is indicated
by *, **, and *** at the 0.1, 0.05, and 0.01 levels, respectively.
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A.3 Proofs

A.3.1 Proof of Proposition 1

We start from the value function and mobility matrix of the recovered individuals. Taking
expectation on both sides of equation (3) and denote Ṽ R

i,t ≡ Et−1U
R
i,t(εi,t), we have

Ṽ R
i,t = ui + Eεi,tmax

j
{βṼ R

j,t+1 − µ̃ij + εij,t}. (A.1)

Let’s denote V ≡ max
j

{βṼ R
j,t+1 − µ̃ij + εij,t}, we can calculate its expectation under our

assumption that εij,t follows the Gumbel distribution:

Eεi,tV =

∫
V dPr{∀j, εij,t ≤ V + µ̃ij − βṼ R

j,t+1}

=

∫
V d
∏
j

exp
{
− exp

{
−[V + µ̃ij − βṼ R

j,t+1]/κ− γEuler
}}

=

∫
V d exp

{
−
∑
j

(V R
j,t+1)

βµ−1
ij exp

{
−V/κ− γEuler

}}
.

Let Z ≡ κ ln
∑

j(V
R
j,t+1)

βµ−1
ij , then the integral above can be transformed as:

Eεi,tV =

∫
V d exp

{
− exp

{
−(V − Z)/κ− γEuler

}}
=

∫
(V ′ + Z)d exp

{
− exp

{
−V ′/κ− γEuler

}}
= Z,

where the last equality is due to our normalization of the mean of the Gumbel distribution
as 0. Substituting the result above to equation (A.1), we get

Ṽ R
i,t = ui + Eεi,tV ⇒ V R

i,t = exp
(ui

κ

)∑N

j=1

(
V R
j,t+1

)β
(µij)

−1 .

The value functions of type S and type I can be derived in similar ways.

A.3.2 Proof of Proposition 2

To simply notations, we denote Zij = βṼ R
j,t+1 − µ̃ij, the mobility rate from i to j for type

R satisfies:

mR
ij,t = Prob{∀k ̸= j, βṼ R

k,t+1 − µ̃ik + εik,t ≤ βṼ R
j,t+1 − µ̃ij + εij,t}

= Prob{∀k ̸= j, εik,t ≤ εij,t + Zij − Zik}

=

∫ ∏
k ̸=j

exp
{
− exp

{
−(εij,t + Zij − Zik)/κ− γEuler

}}
d exp

{
− exp

{
−εij,t/κ− γEuler

}}
.
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Denote Y = exp
{
− exp

{
−εij,t/κ− γEuler

}}
, we have:

mR
ij,t =

∫
Y

∑
k ̸=j exp{(Zik−Zij)/κ}dY =

1∑
k ̸=j exp{(Zik − Zij)/κ}+ 1

=
exp{Zij/κ}∑
k exp{Zik/κ}

=

(
V R
j,t+1

)β
(µij)

−1∑N
k=1

(
V R
k,t+1

)β
(µik)

−1
.

The mobility rates for type S and I can be derived in similar ways.

A.3.3 Proof of Proposition 3

Denote x̂ = x/xss, while xss is the steady-state value of x, we have V̂
R
i,t and V̂ I

i,t converging
to 1 at the steady state. It implies that ∀δ > 0 small enough, ∃ T such that ∀t > T ,

|V̂ R
i,t − 1| < δ. Using the Taylor expansion, we know that |

(
V̂ R
i,T+1

)β
− 1| < βδ + o(δ).

Suppose for any period s, ∃ ϵ such that |V̂ R
i,s − 1| = ϵ > 0, from equations (4) and (5), we

know

V̂ R
i,T − 1 =

N∑
j=1

mR
ij

[(
V̂ R
j,T+1

)β
− 1

]

⇔ |V̂ R
i,T − 1| <

N∑
j=1

mR
ij(βδ + o(δ)) = βδ + o(δ)

⇔ |V̂ R
i,s − 1| < βT+1−sδ + o(δ)

Then for the given δ, since β < 1 we can always find some T large enough such that

|V̂ R
i,s − 1| < βT+1−sδ + o(δ) < ϵ, (A.2)

contradiction, we have V̂ R
i,t = 1, ∀t. Similarly, we can show that V̂ I

i,t = 1. When the value
functions of type R and I are constant, it is easy to see that mR

ij,t = mR
ij and mI

ij,t = mI
ij

from equation (5).

A.3.4 Proof of Lemma 1

Proposition 3 tells that the lifetime utility type R and I are time-invariant, then equation
(4) becomes

V S
i,t = eui/κ

N∑
j=1

(V S
j,t+1)

β(1−αj,t+1)(V R
I )βαj,t+1µ−1

ij

V I
i = eu

I
i /κ

N∑
j=1

(V I
j )

β(1−γR
j −γD

j )(V R
j )βγ

R
j (V D

j )βγ
D
j µ−1

ij

V R
i = eui/κ

N∑
j=1

(V R
j )βµ−1

ij
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Divide the equation of type I by the one of type R, and use equation (5), we get:

V I
i

V R
i

= e
uIi −ui

κ

N∑
j=1

mR
ij

(
V I
j

V R
j

)β(1−γR
j −γD

j )(
V D
j

V R
j

)βγD
j

<

N∑
j=1

mR
ij

(
V I
j

V R
j

)β(1−γR
j −γD

j )

The inequality comes from the fact that 0 < uI
i < ui and V D

i < V R
i . Denote λ ≡

maxi{(V I
i /V

R
i )β(1−γR

i −γD
i )} and k ≡ argmaxi{(V I

i /V
R
i )β(1−γR

i −γD
i )} and note that β(1 −

γD
k − γR

k ) < 1, the inequality above implies that

λ
1

β(1−γR
k

−γD
k

) < λ ⇒ λ < 1 ⇒ V I
i < V R

i , ∀i.

Similarly, we divide the equation of type S group by the one of type R and get:

V S
i,t

V R
i

=
N∑
j=1

mR
ij

(
V S
j,t+1

V R
j

)β(1−αj,t+1)(
V I
j

V R
j

)βαj,t+1

≤
N∑
j=1

mR
ij

(
V S
j,t+1

V R
j

)β(1−αj,t+1)

Say, if there exists some V S
i,t/V

R
i > 1, from the inequality above we know that there must

exist some V S
j,t+1/V

R
j > 1. Suppose ξt ≡ maxi V

S
i,t/V

R
i > 1, then the equation above

implies that

ξt ≤
N∑
j=1

mR
ijξ

β(1−αj,t+1)

t+1 ≤
N∑
j=1

mR
ijξ

β

t+1 = ξ
β

t+1

Therefore, ξt+1 ≥ ξ
1/β

t > ξt and {ξt+1}∞t=0 is a growing series greater than 1. However,
at the steady state, as the infected individuals are all removed from the population and
infection rates fall to zero, we have V S

i,∞ = V R
i,∞ according to equation (4). We should have

ξ∞ = 1. Contradiction, we have V S
i,t ≤ V R

i,t , ∀i and t. Finally, near DFE, the measure of
type I is close to 0 and the whole population is susceptible, we have V S

i,t = V R
i according

to equation (4). Since V I
i < V R

i , we immediately have V I
i < V S

i,t near the DFE.

A.3.5 Proof of Proposition 4

Taking logs on both sides of the expression for mS
ij,t in equation (5), we have

ln(mS
ij,t) = β(1− αj,t+1) ln(V

S
j,t+1) + βαj,t+1 ln(V

I
j,t)− ln(µij,t)− ln(OV S

i,t), (A.3)

while OV S
i,t ≡

∑N
k=1

(
V S
k,t+1

)β(1−αk,t+1)
(
V I
k,t+1

)βαk,t+1 (µik,t)
−1 is the option value of region

i for type S. Taking partial derivative of equation (A.3) with respect to αj,t+1, we have

∂ ln(mS
ij,t)

∂αj,t+1

= β ln(
V I
j,t

V S
j,t

)−
∂ ln(OV S

i,t)

∂αj,t+1

. (A.4)

Denote vk,t =
(
V S
k,t+1

)β(1−αk,t+1)
(
V I
k,t+1

)βαk,t+1 (µik,t)
−1, then OV S

i,t =
∑N

k=1 vk,t and

∂ ln(OV S
i,t)

∂αj,t+1

=
∂ ln(OV S

i,t)

∂OV S
i,t

∂OV S
i,t

∂vj,t

∂vj,t
∂ln(vj,t)

∂ ln(vj,t)

∂αj,t+1

=
vj,t
OV S

i,t

β ln(
V I
j,t+1

V S
j,t+1

)

= βmS
ij,t ln(

V I
j,t+1

V S
j,t+1

).
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The last equality uses the expression for mS
ij,t in equation (5). Therefore, we have

∂ ln(mS
ij,t)

∂αj,t+1

= β(1−mS
ij,t) ln(

V I
j,t+1

V S
j,t+1

), (A.5)

Since V I
j < V S

j according to Lemma 1 and mS
ij,t ≤ 1 we have

∂ ln(mS
ij,t)

∂αj,t+1
≤ 0.

A.3.6 Proof of Proposition 5

We know that the law of motion for type I is given by It+1 = FIt + V It, and the
next-generation matrix M is M = F (I− V )−1. Given that χi ≥ 0 and mI

ij ≥ 0, ∀i and
∀j, F is obviously non-negative. As V has a spectral radius of matrix less than 1, we
have (I − V )−1 =

∑∞
t=1V

t. Since V is non-negative, as γi < 1 ∀i, (I − V )−1 must be
non-negative as well. Therefore, M is non-negative. Then using the Collatz - Wielandt
formula, the spectral radius of M satisfies:

ρ(M ) = max
x≥0

min
i,xi ̸=0

(xM)i
xi

= min
x≥0

max
i,xi ̸=0

(xM )i
xi

. (A.6)

Denote e = [1, ..., 1]1×N , a row vector that all elements are one. According to the Perron-
Frobenius theorem, e is the left eigenvector of the mobility matrix m with an eigenvalue
of 1, given that m is a Markov matrix. So we have em = e. We can construct a row
vector ε whose ith element is εi = γi/χi, i.e., ε = [γ1/χ1, ..., γN/χN ]1×N . We next show

εM = εF (I− V )−1 = e.

First, let Diag(x) be a square matrix with elements of vector x on the main diagonal,
and χ = {χ1, ..., χN} and γ = {γ1, ..., γN}. Then εF = εDiag(χ)m = γm. Second,
e(I−V ) = e(I−Diag(e−γ)m) = e−eDiag(e−γ)m = em−(em−eDiag(γ)m) = γm.
Therefore, εF = e(I− V ), or equivalently, εF (I− V )−1 = e. Then if we replace x in
equation (A.6) by the constructed vector ε, we have

min
i

χi

γi
= min

i

1

εi
≤ ρ(M ) ≤ max

i

1

εi
= max

i

χi

γi
, (A.7)

so the global R0 is bounded by the lowest and highest local R0.

A.3.7 Proof of Proposition 6

Following the previous proof, we denote the next-generation matrix asM = F (I−V )−1 =
Diag(χ)m(I−Diag(e− γ)m)−1, therefore,

dM

dχi

=
dDiag(χ)

dχi

m(I−Diag(e− γ)m)−1 ≥ 0,

and

dM

dγi
= −Diag(χ)m(I−Diag(e− γ)m)−1 (I−Diag(e− γ)m)

dγi
(I−Diag(e− γ)m)−1

= Diag(χ)m(I−Diag(e− γ)m)−1dDiag(e− γ)

dγi
m(I−Diag(e− γ)m)−1 ≤ 0,
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using the fact that matrices m and (I−Diag(e− γ)m)−1 are both nonnegative (see the
previous proof). According to Theorem 2.1 (c) in Li and Schneider (2002), the spectral
radius of an irreducible nonnegative matrix increases if any entry of it increases, vice versa
if any entry of it decreases. Therefore, the global R0 increases with the transmission rate
χi and decreases with the removal rate γi,∀ i.

A.3.8 Proof of Proposition 7

We divide the value function for type S in equation (4) by its steady state and have

V̂ S
i,t =

V S
i,t

V S
i,ss

=

∑N
j=1

(
V S
j,t+1

)β(1−αj,t+1) (V I
j,t+1

)βαj,t+1 (µij)
−1∑N

j=1

(
V S
j,ss

)β
(µij)

−1

=
N∑
j=1

(
V S
j,ss

)β
(µij)

−1∑N
k=1

(
V S
k,ss

)β
(µik)

−1

(
V S
j,t+1

)β(1−αj,t+1) (V I
j,t+1

)βαj,t+1(
V S
j,ss

)β
=

N∑
j=1

mS
ij,ss

(
V̂ S
j,t+1

)β(1−αj,t+1) (
V̂ I
j,t+1

)βαj,t+1

(
V I
j,ss

V S
j,ss

)βαj,t+1

.

As for the mobility matrix, we do the same and get

mS
ij,s

mS
ij,ss

=

(
V S
j,t+1

)β(1−αj,t+1) (V I
j,t+1

)βαj,t+1 (µij)
−1(

V S
j,ss

)β
(µij)

−1

V S
i,ss

V S
i,t+1

=

(
V S
j,t+1

)β(1−αj,t+1) (V I
j,t+1

)βαj,t+1(
V S
j,ss

)β 1

V̂ S
i,t+1

=

(
V̂ S
j,t+1

)β(1−αj,t+1) (
V̂ I
j,t+1

)βαj,t+1
(

V I
j,ss

V S
j,ss

)βαj,t+1

∑N
j=1m

S
ij,ss

(
V̂ S
j,t+1

)β(1−αj,t+1) (
V̂ I
j,t+1

)βαj,t+1
(

V I
j,ss

V S
j,ss

)βαj,t+1
.
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Appendix B: Supplementary Materials

B.1 Data

Epidemiological Data of COVID-19 Daily COVID-19 data for each state from Jan-
uary 2020 till August 2021 are collected from the COVID Tracking Project. It reports
information on the total number of confirmed cases, hospitalized cases, and deaths for
each state. We aggregate the daily COVID-19 data to a biweekly level and build a panel
dataset of US states.

Policy Data The implementation dates of various state-level COVID-19 policies in the
US are documented by Raifman et al. (2020). This database tracks COVID-19 policies
implemented by each state over time and covers a wide range of policies, including public
place closure, physical distance closures, stay home policy, face-mask-wearing, and quar-
antine policy. We follow Hale et al. (2021) to construct a US state-level policy index. The
index is a composite measure that combines different indicators of containment policies
into a general index. We first re-scale each of the sub-policy by their maximum value
to create a score between 0 and 100, with a missing value contributing 0. Next, these
scores of different indicators are averaged to get the final composite measure for each
state. The composite measure allows us to compare government responses to COVID-19
across states.

Mobility Data We use anonymous smartphone data from PlaceIQ, a location analytics
firm, to estimate the interaction between the pandemic and human movement. PlaceIQ
data tracks mobile phone users’ location over time and describes smartphone devices
“pinging” in a given geographic unit on a given day. Couture et al. (2021) used these
data to compute a location exposure index “LEX”, which measures the share of devices
that have been pinged in a state other than their present location at least once in the
past 14 days. The “LEX” measure is a state-to-state matrix at a daily frequency. The
definition of “LEX”, as stated in Couture et al. (2021), is “What fraction of active phones
in geographic unit g0 on day d have been active in geographic unit g at any point in the
last 14 days?” We further aggregate the “LEX” from daily to a biweekly frequency to
obtain real-time state-to-state mobility flows during the pandemic from January 2020 to
August 2021. We aggregated the “LEX” data in two different ways: 1), we take the max
of daily bilateral mobility flows between states during bi-week t; 2), we take the average
of daily mobility flows between states during bi-week t.

The measurement we use to assess inter-state mobility flow is based on PlaceIQ and
“LEX” data, and it includes all types of cross-state human activities, such as migration,
commuting, and business travel. The biweekly state-to-state mobility flow is suitable to
provide evidence of empirical relevance, as it is compatible with our theoretical framework,
where agents make multi-period dynamic mobility decisions.

Table B.1 shows the summary statistics of the above-mentioned variables. Panel A is
at the state-pair biweekly level, while Panel B is at the biweekly state level.
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B.2 Reduced Form Analysis

Stylized Fact 1

We first investigate how inter-state human mobility affects the transmission of the virus
using the following empirical specification:

ln(yi,t) = a0 + a1
∑
j ̸=i

m0
ji ln(casesj,t−1) + a2StringencyIndexi,t−1 + dt + Si + νij,t,

where yi,t is the number of newly confirmed COVID-19 cases in state i at a bi-week t. We
use

∑
j ̸=i m

0
ji ln(casesj,t−1) to measure the exposure of state i to the pandemic in other

states due to inter-state human mobility. m0
ji is the share of people moving from state j

to state i in the initial period of our sample, which is the second bi-week of January 2020,
before the outbreak of the pandemic. We use two measures to capture the initial mobility
flow: the maximum daily mobility flows during a bi-week period, and the average daily
mobility flows. casesj,t−1 captures the severity of the pandemic at the origin state j, of
which we use two measures: the number of new cases in period t− 1, and the number of
cumulative cases by period of t− 1. Combined with the two measures of initial mobility
m0

ji, we have four approaches to measure a state i’s exposure to the pandemic in other
states.

Since containment policies are critical for containing the virus, we control for time-
variant containment policies Stringency Indexi,t−1. A higher value in StringencyIndex
indicates stricter containment policies. The stringency of containment policies could be
affected by the severity of the disease in a region, which creates potential endogeneity
concerns. To deal with such concerns, we employ lagged variables. In addition, we control
for time fixed effect dt to capture national shocks and state fixed effect Si for state-specific
factors. Our sample includes all 50 US states at the cross-section across 40 bi-weeks, i.e.,
2,040 bi-weekly state observations for January 2020 to August 2021.

Stylized Fact 2

We then adopt two empirical strategies to examine how infection risk shape inter-state
human mobility. The first is a two-way fixed effect specification given by:

mij,t = b0 + b1Infectioni,t−1 + b2Infectionj,t−1 + b3MobilityRestrictioni,t−1

+ b4MobilityRestrictionj,t−1 +
∑
k

βkXij,k + dt +Oi +Dj + ξij,t,

where mij,t is defined as the share of people who move from state i to state j in a
bi-week t relative to the people that are currently in state j. For independent variables,
Infectioni,t−1 captures the lagged infection rate at the origin state, whereas Infectionj,t−1

represents the lagged infection rate at the destination state. MobilityRestrictioni,t−1 is
a policy indicator reflecting restrictions from the origin state (i) on cross-region mobility.
It equals 0 when the local government implements no restrictions, 1 when the government
recommends people not to travel across regions, and 2 when the government imposes cross-
region movement restrictions. MobilityRestrictionj,t−1 refers to the same set of policies
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on movement restrictions but imposed by the destination state (j). Xij,k captures the
time-invariant gravity variables, including distance, and shared common border between
the origin and destination. The primary coefficients of interest are b1 and b2, which assess
how bilateral state-to-state mobility responds to infection rates at origin and destination
state, respectively. In addition, we include dt to capture the time fixed effect. We control
for origin state and destination state fixed effects (Oi, Dj). We also control for bilateral
state pair fixed effects ODij for alternative specifications to capture all time-invariant
unobservables at the state-pair level, such as pre-existing pairwise social and economic
linkages. Since our sample includes biweekly state-pair observations that experience no
human mobility flows during the bi-week. We estimate the model using Poisson Pseudo
Maximum Likelihood (PPML), which handles zeros in the mobility data and potential
heteroskedasticity (Silva and Tenreyro, 2006).

In the second specification, we investigate how the heterogeneity of COVID-19 across
states affects state-level net mobility inflows. We expect states that suffered more from the
pandemic to have smaller net inflows and estimate the following Difference-in-Differences
(DiD) specification:

NetInflowSharej,t = c0 + c1CumulativeInfectionRatej × AfterPandemict

+ c2StringencyIndexj,t−1 + dt + Sj + νj,t,

where NetInflowSharej,t is the net total mobility inflows from other states to a state j
at period t divided by the population of j, CumulativeInfectionRatej is the cumulative
infection rate at state j measured by the total number of confirmed cases divided by the
population of j, and AfterPandemict is dummy that equals 1 if t is after the COVID-19
pandemic started in the US. Again, we control for the stringency of closure policies as
measured by Stringency Indexi,t−1, state fixed effect Sj and time fixed effect dt.

In addition, we augment the DiD specification above and allow for time-varying treat-
ment effects.

NetInflowSharej,t = α0 +
∑
k

αkCumulativeInfectionRatej × Tk,t

+ c2StringencyIndexj,t−1 + dt + Sj + νj,t,

while Tk is time dummy that equal 1 if period t falls within a specific year-month k. We
note the state fixed effect would absorb CumulativeInfectionRatej while the time fixed
effect would absorb Tk. The key coefficient of interest is αk, which we plot in Figure B.1.
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B.3 Additional Figures

Figure B.1: Effect of Cumulative Infection Rates on Net Mobility Inflows

Notes. This figure depicts the effect of cumulative infection rate on net mobility inflows of

US states before and after the national emergency declaration in March 2020. The dependent

variable is the net biweekly mobility inflows of a state, measured by the maximum daily net

inflows within a bi-week. The markers represent the estimated coefficients of interaction

terms between year-month dummies and state-level cumulative infection rate in August

2021. The capped spikes represent the associated 95% confidence intervals. The reference

group is the final month of the data sample, August 2021. The dashed vertical line represents

March 2020, when a national emergency was declared. The regression considers state and

time fixed effects. Standard errors are clustered at the state and biweekly levels. We also

consider measuring mobility inflows using the average daily net inflows within a bi-week and

get a qualitatively similar figure.
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B.4 Additional Tables

Table B.1: Summary Statistics

Definition Obs Mean Std.Dev Min Max

Panel A. Variables at the bilateral state pair - biweek level
Max mobility Max of bilateral mobility flow between states at bi-weekly frequency 102,000 0.012 0.036 0 0.766
Mean mobility Average of bilateral mobility flow between states at bi-weekly frequency 102,000 0.011 0.034 0 0.742
Distance bilateral distance between states 102,000 1,981.038 1,461.291 37.356 8.176.055
Border Dummy variable of whether two states share a border 102,000 0.084 0.277 0 1

Panel B. Variables at the state - biweek level
New infection rate New infection rate (new cases /population) measured at state-biweek level 2,040 0.003 0.003 0 0.024
Mobility Restrictions Restrictions on internal travel across regions/cities implemented by state government 2,040 1.116 0.537 0 2
Stringency index US state-level containment policy index, ranged [0, 100] 2,040 52.380 18.300 0 93.52
Number of new cases Number of new cases at state bi-weekly level 2,040 17,930 37,035 0 575,710∑

j ̸=i m
max
ji ln(newcasesj,t) sum of ln (new cases) across other states, weighted by max mobility in the initial period 2,040 13.328 5.713 0 26.959∑

j ̸=i m
mean
ji ln(newcasesj,t) sum of ln (new cases) across other states, weighted by mean mobility in the initial period 2,040 12.912 5.497 0 26.037∑

j ̸=i m
max
ji ln(cumulativecasesj,t) sum of ln (cumulative cases) across other states, weighted by max mobility in the initial period 2,040 17.387 7.493 0.001 33.006∑

j ̸=i m
mean
ji ln(cumulativecasesj,t) sum of ln (cumulative cases) across other states, weighted by mean mobility in the initial period 2,040 16.834 7.199 0.001 31.700

Share of net inflow
percentage of people net inflow over population, aggregated by maximum of bilateral mobility 2,040 0.136 3.431 -10.204 11.802

(by max mobility)

Share of net inflow
percentage of people net inflow over population, aggregated by average of bilateral mobility 2,040 0.121 3.156 -9.667 11.021

(by average mobility)
Cumulative infection rate cumulative number of cases over population at the end of data period 2,040 10.976 2.583 3.545 14.905

Notes: Panel A shows the summary statistics of variables at the bilateral state pair - biweek level. The sample includes all 2,550 state pairs in
the U.S., from January 2020 to August 2021, with 40 periods of bi-weeks. Panel B shows the summary statistics of variables at the state - biweek
level. The sample includes all 51 states in the U.S., from January 2020 to August 2021, with 40 periods of bi-weeks.

35



Table B.2: Model Parameters for the Three-Region Economy

Parameters Definition Target/Source Value
β Discount rate 4% annual interest rate 0.9985
κ Dispersion of preference shock estimates from biweekly Baidu mobility data 8
γD Mortality rate US case fatality rate in year 2020 0.0174
γR Recovery rate average removal period of 18 days 0.76
χ1 Transmission rate of Region 1 authors’ choice 0.3
χ2 Transmission rate of Region 2 authors’ choice 0.4
χ3 Transmission rate of Region 3 authors’ choice 0.5
η utility discount for group I (uI

i = ηui) authors’ choice 0.5
µij mobility costs from i to j, i ̸= j authors’ choice 4
µii local mobility costs authors’ choice 1
ui instantaneous utility of type I and R authors’ choice 1
uD instantaneous utility of type D authors’ choice 0

B.5 The Normalized Hat Algebra Algorithm

First, we note that at the steady state, there is no type I agent, therefore, the infection
rate α = 0. Normalizing the value of the deceased as one, i.e., V D = 1, the steady state
of the model is characterized by:

V S
i = exp(

ui

κ
)

N∑
j=1

(
V S
j

)β
(µij)

−1 ,

V I
i = exp(

uI
i

κ
)

N∑
j=1

(
V I
j

)β(1−γR
j −γD

j ) (
V R
j

)βγR
j (µij)

−1 ,

V R
i = exp(

ui

κ
)

N∑
j=1

(
V R
j

)β
(µij)

−1 ,

mS
ij =

(
V S
j

)β
(µij)

−1∑N
k=1 (V

S
k )

β
(µik)

−1
,

mI
ij =

(
V I
j

)β(1−γR
j −γD

j ) (V R
j

)βγR
j (µij)

−1∑N
k=1 (V

I
k )

β(1−γR
j −γD

j )
(V R

k )
βγR

j (µik)
−1

,

mR
ij =

(
V R
j

)β
(µij)

−1∑N
k=1 (V

R
k )

β
(µik)

−1
.

The size of type S and R in each region satisfies

Si =
N∑
j=1

Sjm
S
ji, Ri =

N∑
j=1

Rjm
R
ji.
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Then for given κ, β, {ui, u
I
i , γ

R
i , γ

D
i }Ni=1, {µij}N×N , we can solve for the steady-state

value function and mobility rate of S, I, and R using the equations above.
Denote x̂t = xt/xss where xss is the steady-state value of x, following Proposition 7,

the model can be rewritten as:

V̂ S
i,t =

N∑
j=1

mS
ij

(
V̂ S
j,t+1

)β(1−αj,t+1) (
V̂ I
j,t+1

)βαj,t+1

(
V I
j

V S
j

)βαj,t+1

(E.1)

V̂ I
i,t =

N∑
j=1

mI
ij

(
V̂ I
j,t+1

)β(1−γR
j −γD

j ) (
V̂ R
j,t+1

)βγR
j

(E.2)

V̂ R
i,t =

N∑
j=1

mR
ij

(
V̂ R
j,t+1

)β
(E.3)

mS
ij,t =

mS
ij

(
V̂ S
j,t+1

)β(1−αj,t+1) (
V̂ I
j,t+1

)βαj,t+1
(

V I
j

V S
j

)βαj,t+1

∑N
k=1m

S
ik

(
V̂ S
k,t+1

)β(1−αk,t+1) (
V̂ I
k,t+1

)βαk,t+1
(

V I
k

V S
k

)βαk,t+1

(E.4)

mI
ij,t =

mI
ij

(
V̂ I
j,t+1

)β(1−γR
j −γD

j ) (
V̂ R
j,t+1

)βγR
j

∑N
k=1m

I
ik

(
V̂ I
k,t+1

)β(1−γR
k −γD

k ) (
V̂ R
k,t+1

)βγR
k

(E.5)

mR
ij,t =

mR
ij

(
V̂ R
j,t+1

)β
∑N

k=1m
R
ik

(
V̂ R
k,t+1

)β (E.6)

Algorithm

1. Solve the steady state V S
i , V I

i , V
R
i , mS

ij, m
I
ij and mR

ij.

2. For an exogenously given {L0}, take a large enough T .

3. Take initial guess
{
V̂

S(0)
t , V̂

I(0)
t , V̂

R(0)
t

}T

t=1
.

4. For each iteration of
{
V̂

S(k)
t , V̂

I(k)
t , V̂

R(k)
t

}T

t=1
:

(a) Given {St−1, It−1, Rt−1, Dt−1}, solve forward simultaneously for {St, It, Rt, Dt, αt}
from equations (6), (7), (8), (9), (E.4), (E.5), and (E.6).

(b) Use equations (E.1), (E.2), (E.3) to solve backward to get
{
V̂ S(k)′, V̂

I(k)′
t , V̂

R(k)′
t

}T

t=1

5. If
{
V̂

S(k)′
t , V̂

I(k)′
t , V̂

R(k)′
t

}
is close to

{
V̂

S(k)
t , V̂

I(k)
t , V̂

R(k)
t

}
, finish. Otherwise, set next

guess
{
V̂

S(k+1)
t , V̂

I(k+1)
t , V̂

R(k+1)
t

}
=
{
V̂

S(k)′
t , V̂

I(k)′
t , V̂

R(k)′
t

}
.
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B.6 Extension: a Model with Vaccinations

We now generalize the baseline model to incorporate vaccinations. We assume that people
get vaccinated will be permanently immune, thus join group R. We further assume that
region i randomly vaccinate a fraction δi of the susceptible population in each period, so
a susceptible person from region i moving to region j will have a chance of δj directly
transferring to type R. Now the Bellman equation for group S people becomes:

US
i,t(εi,t) =ui +max

j

{
βEt

[
(1− δj)(1− αj,t+1)U

S
j,t+1(εj,t+1) + (1− δj)αj,t+1U

I
j,t+1(εj,t+1)

+δjU
R
j,t+1(εj,t+1)

]
− µ̃ij + εij,t

}
.

As for the demographic dynamic, a fraction δi of type S will join type R:

Si,t = (1− δi)
N∑
j=1

Sj,t−1m
S
ji,t−1, Ri,t =

N∑
j=1

Rj,t−1m
R
ji,t−1 + δi

N∑
j=1

Sj,t−1m
S
ji,t−1,

therefore, vaccination can slow down the spread of pandemics directly. If δi = 0, the model
collapses to our benchmark. We can show that the value function of type S satisfies

V S
i,t = exp

(ui

κ

) N∑
j=1

(
V S
j,t+1

)β(1−δj)(1−αj,t+1) (
V I
j,t+1

)β(1−δj)αj,t+1
(
V R
j,t+1

)βδj
(µij)

−1 ,

while the value functions of types I and R remain the same as Proposition 1. The mobility
rate of type S is given by

mS
ij,t =

(
V S
j,t+1

)β(1−δj)(1−αj,t+1) (V I
j,t+1

)β(1−δj)αj,t+1
(
V R
j,t+1

)βδj (µij)
−1∑N

k=1

(
V S
k,t+1

)β(1−δk)(1−αk,t+1)
(
V I
k,t+1

)β(1−δk)αk,t+1
(
V R
k,t+1

)βδk (µik)
−1

,

while the mobility rates of types I and R remain the same as Proposition 2.
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