27 research outputs found

    Lagrangian simulations of the transport of young air masses to the top of the Asian monsoon anticyclone and into the tropical pipe

    Get PDF
    We have performed backward trajectory calculations and simulations with the three-dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS) for two succeeding monsoon seasons using artificial tracers of air mass origin. With these tracers we trace back the origin of young air masses (age&thinsp;&lt;6 months) at the top of the Asian monsoon anticyclone and of air masses within the tropical pipe (6 months&thinsp;&lt;&thinsp;age&thinsp;&lt;18 months) during summer 2008. The occurrence of young air masses (&lt;6 months) at the top of the Asian monsoon anticyclone up to ∼460&thinsp;K is in agreement with satellite measurements of chlorodifluoromethane (HCFC-22) by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument. HCFC-22 can be considered as a regional tracer for continental eastern Asia and the Middle East as it is mainly emitted in this region. Our findings show that the transport of air masses from boundary layer sources in the region of the Asian monsoon into the tropical pipe occurs in three distinct steps. First, very fast uplift in “a convective range” transports air masses up to 360&thinsp;K potential temperature within a few days. Second, air masses are uplifted from about 360&thinsp;K up to 460&thinsp;K within “an upward spiralling range” within a few months. The large-scale upward spiral extends from northern Africa to the western Pacific. The air masses are transported upwards by diabatic heating with a rate of up to 1–1.5&thinsp;K per day, implying strong vertical transport above the Asian monsoon anticyclone. Third, transport of air masses occurs within the tropical pipe up to 550&thinsp;K associated with the large-scale Brewer–Dobson circulation within ∼1 year. In the upward spiralling range, air masses are uplifted by diabatic heating across the (lapse rate) tropopause, which does not act as a transport barrier, in contrast to the extratropical tropopause. Further, in the upward spiralling range air masses from inside the Asian monsoon anticyclone are mixed with air masses convectively uplifted outside the core of the Asian monsoon anticyclone in the tropical adjacent regions. Moreover, the vertical transport of air masses from the Asian monsoon anticyclone into the tropical pipe is weak in terms of transported air masses compared to the transport from the monsoon anticyclone into the northern extratropical lower stratosphere. Air masses from the Asian monsoon anticyclone (India/China) contribute a minor fraction to the composition of air within the tropical pipe at 550&thinsp;K (6&thinsp;%), and the major fractions are from Southeast Asia (16&thinsp;%) and the tropical Pacific (15&thinsp;%).</p

    Human protein reference database—2006 update

    Get PDF
    Human Protein Reference Database (HPRD) () was developed to serve as a comprehensive collection of protein features, post-translational modifications (PTMs) and protein–protein interactions. Since the original report, this database has increased to >20 000 proteins entries and has become the largest database for literature-derived protein–protein interactions (>30 000) and PTMs (>8000) for human proteins. We have also introduced several new features in HPRD including: (i) protein isoforms, (ii) enhanced search options, (iii) linking of pathway annotations and (iv) integration of a novel browser, GenProt Viewer (), developed by us that allows integration of genomic and proteomic information. With the continued support and active participation by the biomedical community, we expect HPRD to become a unique source of curated information for the human proteome and spur biomedical discoveries based on integration of genomic, transcriptomic and proteomic data

    OCL Based Approach for Sustainable ML Model Development

    No full text
    It became a bottleneck for the Machine Learning (ML) researchers to select/develop a sustainable model for a particular problem. Hence, there is a need for an approach to prepare a model with all constraints of the software system. The proposed approach is based on Object Constraint Language (OCL) which is a declarative language for writing constraints on software artifacts, it is widely used for effective representation of Functional Requirements (FR’s) and Non-Functional Requirements (NFR’s). In the proposed system, the paddy leaf disease identification system is considered and proposed Leaf Identification Constraints (LIC) and Leaf Disease Identification Constraints (LDIC) based on OCL, for the proposed constraints the Convolutional Neural Network (CNN) is chosen, as it can handle diverse range of input data and large volume of concurrent requests. To satisfy other constraints of the system, the Auto encoders are used along with CNN and the input data was take in the form of thermal imaging. This system was evaluated with test data and validation data and obtained the accuracy of 90.6%. And 84.8 was attained by earlier researchers before this approach

    Understanding cryogenic frost point hygrometer measurements after contamination by mixed-phase clouds

    No full text
    Abstract. Balloon-borne water vapour measurements in the (sub)tropical upper troposphere and lower stratosphere (UTLS) by means of frost point hygrometers provide important information on air chemistry and climate. However, the risk of contamination from sublimating hydrometeors collected by the intake tube may render these measurements difficult, particularly after crossing low clouds containing supercooled droplets. A large set of measurements during the 2016–2017 StratoClim balloon campaigns at the southern slopes of the Himalayas allows us to perform an in-depth analysis of this type of contamination. We investigate the efficiency of wall-contact and freezing of supercooled droplets in the intake tube and the subsequent sublimation in the UTLS using Computational Fluid Dynamics (CFD). We find that the airflow can enter the intake tube with impingement angles up to 60°, owing to the pendulum motion of the payload. Supercooled droplets with radii > 70 μm, as they frequently occur in mid-tropospheric clouds, typically undergo contact freezing when entering the intake tube, whereas only about 50 % of droplets with 10 μm radius freeze, and droplets 100 ppmv) in the stratosphere. Furthermore, we use CFD to differentiate between stratospheric water vapour contamination by an icy intake tube and contamination caused by outgassing from the balloon and payload, revealing that the latter starts playing a role only at high altitudes (

    Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds

    No full text
    Balloon-borne water vapour measurements in the upper troposphere and lower stratosphere (UTLS) by means of frost point hygrometers provide important information on air chemistry and climate. However, the risk of contamination from sublimating hydrometeors collected by the intake tube may render these measurements unusable, particularly after crossing low clouds containing supercooled droplets. A large set of (sub)tropical measurements during the 2016–2017 StratoClim balloon campaigns at the southern slopes of the Himalayas allows us to perform an in-depth analysis of this type of contamination. We investigate the efficiency of wall contact and freezing of supercooled droplets in the intake tube and the subsequent sublimation in the UTLS using computational fluid dynamics (CFD). We find that the airflow can enter the intake tube with impact angles up to 60∘, owing to the pendulum motion of the payload. Supercooled droplets with radii > 70 µm, as they frequently occur in mid-tropospheric clouds, typically undergo contact freezing when entering the intake tube, whereas only about 50 % of droplets with 10 µm radius freeze, and droplets  100 ppmv) in the stratosphere. Furthermore, we use CFD to differentiate between stratospheric water vapour contamination by an icy intake tube and contamination caused by outgassing from the balloon and payload, revealing that the latter starts playing a role only during ascent at high altitudes (p < 20 hPa).ISSN:1867-1381ISSN:1867-854

    Strong day-to-day variability of the Asian Tropopause Aerosol Layer (ATAL) in August 2016 at the Himalayan foothills

    No full text
    The South Asian summer monsoon is associated with a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere (UTLS), which confines the air mass inside. During boreal summer, the confinement of this air mass leads to an accumulation of aerosol between about 13 and 18 km (360 and 440 K potential temperature); this accumulation of aerosol constitutes the Asian Tropopause Aerosol Layer (ATAL). We present balloon-borne aerosol backscatter measurements of the ATAL performed by the Compact Optical Backscatter Aerosol Detector (COBALD) instrument in Nainital in northern India in August 2016, and compare these with COBALD measurements in the post-monsoon time in November 2016. The measurements demonstrate a strong variability of the ATAL's altitude, vertical extent, aerosol backscatter intensity and cirrus cloud occurrence frequency. Such a variability cannot be deduced from climatological means of the ATAL as they are derived from satellite measurements. To explain this observed variability we performed a Lagrangian back-trajectory analysis using the Chemical Lagrangian Model of the Stratosphere (CLaMS). We identify the transport pathways as well as the source regions of air parcels contributing to the ATAL over Nainital in August 2016. Our analysis reveals a variety of factors contributing to the observed day-to-day variability of the ATAL: continental convection, tropical cyclones (maritime convection), dynamics of the anticyclone and stratospheric intrusions. Thus, the air in the ATAL is a mixture of air masses coming from different atmospheric altitude layers. In addition, contributions from the model boundary layer originate in different geographic source regions. The location of the strongest updraft along the backward trajectories reveals a cluster of strong upward transport at the southern edge of the Himalayan foothills. From the top of the convective outflow level (about 13 km; 360 K) the air parcels ascend slowly to ATAL altitudes within a large-scale upward spiral driven by the diabatic heating in the anticyclonic flow of the South Asian summer monsoon at UTLS altitudes. Cases with a strong ATAL typically show boundary layer contributions from the Tibetan Plateau, the foothills of the Himalayas and other continental regions below the Asian monsoon. Weaker ATAL cases show higher contributions from the maritime boundary layer, often related to tropical cyclones, indicating a mixing of clean maritime and polluted continental air. On the one hand increasing anthropogenic emissions in the future are expected due to the strong growth of Asian economies; on the other hand the implementation of new emission control measures (in particular in China) has reduced the anthropogenic emissions of some pollutants contributing to the ATAL substantially. It needs to be monitored in the future whether the thickness and intensity of the ATAL will further increase, which will likely impact the surface climate.ISSN:1680-7375ISSN:1680-736
    corecore