3,711 research outputs found
Near-Optimal Scheduling for LTL with Future Discounting
We study the search problem for optimal schedulers for the linear temporal
logic (LTL) with future discounting. The logic, introduced by Almagor, Boker
and Kupferman, is a quantitative variant of LTL in which an event in the far
future has only discounted contribution to a truth value (that is a real number
in the unit interval [0, 1]). The precise problem we study---it naturally
arises e.g. in search for a scheduler that recovers from an internal error
state as soon as possible---is the following: given a Kripke frame, a formula
and a number in [0, 1] called a margin, find a path of the Kripke frame that is
optimal with respect to the formula up to the prescribed margin (a truly
optimal path may not exist). We present an algorithm for the problem; it works
even in the extended setting with propositional quality operators, a setting
where (threshold) model-checking is known to be undecidable
Jain States in a Matrix Theory of the Quantum Hall Effect
The U(N) Maxwell-Chern-Simons matrix gauge theory is proposed as an extension
of Susskind's noncommutative approach. The theory describes D0-branes,
nonrelativistic particles with matrix coordinates and gauge symmetry, that
realize a matrix generalization of the quantum Hall effect. Matrix ground
states obtained by suitable projections of higher Landau levels are found to be
in one-to-one correspondence with the expected Laughlin and Jain hierarchical
states. The Jain composite-fermion construction follows by gauge invariance via
the Gauss law constraint. In the limit of commuting, ``normal'' matrices the
theory reduces to eigenvalue coordinates that describe realistic electrons with
Calogero interaction. The Maxwell-Chern-Simons matrix theory improves earlier
noncommutative approaches and could provide another effective theory of the
fractional Hall effect.Comment: 35 pages, 3 figure
Balancing Surface Energy Terms for Stable Growth of Planar Surfaces
We investigate the driving forces that determine the growth mode of heteroepitaxial Ge layers grown from solution on Si substrates with orientations (001), (011) and (111) by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Using liquid phase epitaxy, we can study the influences of strain and surface energy terms independently on effects due to limited surface diffusion. In (001) and (011) orientated layers, {111} faceted islands form (Stranski-Krastanov growth). In contrast, (111) orientated layers grow in a two-dimensional step flow growth mode (Frank-van der Merwe growth).
We model these investigations in terms of energy minimisation considering surface energy reduction by formation of faceted islands and elastic strain energy relaxation by island formation. The strain energy relaxation by island formation is calculated by the finite element method. According to our considerations, two-dimensional growth is obtained by selective increase of the free surface energy of the low indices facet planes to a value higher than that of the substrate surface. Formation of faceted islands thus would increase the total surface energy; as a consequence, island formation is suppressed. By choosing the appropriate solvent and temperature in solution growth, we can provide for thermodynamically stable two-dimensional growth
Vortex Waves and Channel Capacity: Hopes and Reality
Several recent contributions have envisioned the possibility of increasing
currently exploitable maximum channel capacity of a free space link, both at
optical and radio frequencies, by using vortex waves, i.e. carrying Orbital
Angular Momentum (OAM). Our objective is to disprove these claims by showing
that they are in contradiction with very fundamental properties of Maxwellian
fields. We demonstrate that the Degrees of Freedom (DoF) of the field cannot be
increased by the helical phase structure of electromagnetic vortex waves beyond
what can be done without invoking this property. We also show that the
often-advocated over-quadratic power decay of OAM beams with distance does not
play any fundamental role in the determination of the channel DoF.Comment: 8 pages, 7 figure
A Quantum Hall Fluid of Vortices
In this note we demonstrate that vortices in a non-relativistic Chern-Simons
theory form a quantum Hall fluid. We show that the vortex dynamics is
controlled by the matrix mechanics previously proposed by Polychronakos as a
description of the quantum Hall droplet. As the number of vortices becomes
large, they fill the plane and a hydrodynamic treatment becomes possible,
resulting in the non-commutative theory of Susskind. Key to the story is the
recent D-brane realisation of vortices and their moduli spaces.Comment: 10 pages. v2(3): (More) References adde
Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment.
INTRODUCTION: Plasma glial fibrillary acidic protein (GFAP) is a marker of astroglial activation and astrocytosis. We assessed the ability of plasma GFAP to detect Alzheimer's disease (AD) pathology in the form of AD-related amyloid-β (Aβ) pathology and conversion to AD dementia in a mild cognitive impairment (MCI) cohort. METHOD: One hundred sixty MCI patients were followed for 4.7 years (average). AD pathology was defined using cerebrospinal fluid (CSF) Aβ42/40 and Aβ42/total tau (T-tau). Plasma GFAP was measured at baseline and follow-up using Simoa technology. RESULTS: Baseline plasma GFAP could detect abnormal CSF Aβ42/40 and CSF Aβ42/T-tau with an AUC of 0.79 (95% CI 0.72-0.86) and 0.80 (95% CI 0.72-0.86), respectively. When also including APOE ε4 status as a predictor, the accuracy of the model to detect abnormal CSF Aβ42/40 status improved (AUC = 0.86, p = 0.02). Plasma GFAP predicted subsequent conversion to AD dementia with an AUC of 0.84 (95% CI 0.77-0.91), which was not significantly improved when adding APOE ε4 or age as predictors to the model. Longitudinal GFAP slopes for Aβ-positive and MCI who progressed to dementia (AD or other) were significantly steeper than those for Aβ-negative (p = 0.007) and stable MCI (p < 0.0001), respectively. CONCLUSION: Plasma GFAP can detect AD pathology in patients with MCI and predict conversion to AD dementia
Genetic effects on longitudinal cognitive decline during the early stages of Alzheimer's disease
Cognitive decline in early-stage Alzheimer’s disease (AD) may depend on genetic variability. In the Swedish BioFINDER study, we used polygenic scores (PGS) (for AD, intelligence, and educational attainment) to predict longitudinal cognitive change (measured by mini-mental state examination (MMSE) [primary outcome] and other cognitive tests) over a mean of 4.2 years. We included 260 β-amyloid (Aβ) negative cognitively unimpaired (CU) individuals, 121 Aβ-positive CU (preclinical AD), 50 Aβ-negative mild cognitive impairment (MCI) patients, and 127 Aβ-positive MCI patients (prodromal AD). Statistical significance was determined at Bonferroni corrected p value < 0.05. The PGS for intelligence (beta = 0.1, p = 2.9e−02) was protective against decline in MMSE in CU and MCI participants regardless of Aβ status. The polygenic risk score for AD (beta = − 0.12, p = 9.4e−03) was correlated with the rate of change in MMSE and was partially mediated by Aβ-pathology (mediation effect 20%). There was no effect of education PGS on cognitive measures. Genetic variants associated with intelligence mitigate cognitive decline independent of Aβ-pathology, while effects of genetic variants associated with AD are partly mediated by Aβ-pathology
- …