82 research outputs found

    Static Electron Correlation in Anharmonic Molecular Vibrations: A Hybrid TAO-DFT Study

    Get PDF
    Hybrid thermally-assisted-occupation density functional theory is used to examine the effects of static electron correlation on the prediction of a benchmark set of experimentally observed molecular vibrational frequencies. The B3LYP and B97-1 thermally-assisted-occupation measure of static electron correlation is important for describing the vibrations of many of the molecules that make up several popular test sets of experimental data. Shifts are seen for known multireference systems and for many molecules containing atoms from the second row of the periodic table of elements. Several molecules only show significant shifts in select vibrational modes, and significant improvements are seen for the prediction of hydrogen stretching frequencies throughout the test set

    Assessment of time-dependent density functional theory with the restricted excitation space approximation for excited state calculations of large systems

    Get PDF
    The restricted excitation subspace approximation is explored as a basis to reduce the memory storage required in linear response time-dependent density functional theory (TDDFT) calculations within the Tamm-Dancoff approximation. It is shown that excluding the core orbitals and up to 70% of the virtual orbitals in the construction of the excitation subspace does not result in significant changes in computed UV/vis spectra for large molecules. The reduced size of the excitation subspace greatly reduces the size of the subspace vectors that need to be stored when using the Davidson procedure to determine the eigenvalues of the TDDFT equations. Furthermore, additional screening of the two-electron integrals in combination with a reduction in the size of the numerical integration grid used in the TDDFT calculation leads to significant computational savings. The use of these approximations represents a simple approach to extend TDDFT to the study of large systems and make the calculations increasingly tractable using modest computing resources

    Kohn-Sham density functional theory calculations of non-resonant and resonant X-ray emission spectroscopy

    Get PDF
    The accuracy of non-resonant and resonant (resonant inelastic X-ray scattering) X-ray emission spectra simulated based upon Kohn-Sham density functional theory is assessed. Accurate non-resonant X-ray emission spectra with the correct energy scale are obtained when short-range corrected exchange-correlation functionals designed for the calculation of X-ray absorption spectroscopy are used. It is shown that this approach can be extended to simulate resonant inelastic X-ray scattering by using a reference determinant that describes a core-excited state. For this spectroscopy, it is found that a standard hybrid functional, B3LYP, gives accurate spectra that reproduce the features observed in experiment. However, the ability to correctly describe subtle changes in the spectra arising from different intermediate states is more challenging and requires averaging over conformations from a molecular dynamics simulation. Overall, it is demonstrated that accurate non-resonant and resonant X ray emission spectra can be simulated directly from Kohn-Sham density functional theory

    Calculating excited state properties using Kohn-Sham density functional theory

    Get PDF
    The accuracy of excited states calculated with Kohn-Sham density functional theory using the maximum overlap method has been assessed for the calculation of adiabatic excitation energies, excited state structures, and excited state harmonic and anharmonic vibrational frequencies for open-shell singlet excited states. The computed Kohn-Sham adiabatic excitation energies are improved significantly by post self-consistent-field spin-purification, but remain too low compared with experiment with a larger error than time-dependent density functional theory. Excited state structures and vibrational frequencies are also improved by spin-purification. The structures show a comparable accuracy to time-dependent density functional theory, while the harmonic vibrational frequencies are found to be more accurate for the majority of vibrational modes. The computed harmonic vibrational frequencies are also further improved by perturbative anharmonic corrections, suggesting a good description of the potential energy surface. Overall, excited state Kohn-Sham density functional theory is shown to provide an efficient method for the calculation of excited state structures and vibrational frequencies in open-shell singlet systems, and provides a promising technique that can be applied to study large systems

    Möbius and Hückel Cyclacenes with Dewar and Ladenburg Defects

    Get PDF
    Copyright © 2020 American Chemical Society. Cyclacene nanobelts have not been synthesized in over 60 years and remain one of the last unsynthesized building blocks of carbon nanotubes. Recent work has predicted that Hückel-cyclacenes containing Dewar benzenoid ring isomers are the most stable isomeric forms for several of the smaller sizes of cyclacene belts. Here, we give a more complete picture of the isomers that are possible within these nanobelt systems by simulating embedded Ladenburg (prismane) benzenoid rings in Hückel-[n]cyclacenes (n = 5-14) and embedded Dewar benzenoid rings in twisted Möbius-[n]cyclacenes (n = 9-14). The Möbius-[9]cyclacene isomer containing one Dewar benzenoid defect and the Hückel-[5]cyclacene isomer containing two maximally spaced Ladenburg benzenoid defects are found to be more stable than their conventional Kekulé benzenoid ring counterparts. The isomers that contain Dewar and Ladenburg benzenoid rings have larger electronic singlet-triplet energy gaps and lower polyradical character when compared with the conventional isomers

    Blockchain technology in quantum chemistry: A tutorial review for running simulations on a blockchain

    Get PDF
    Simulations of molecules have recently been performed directly on a blockchain virtual computer at atomic resolution. This tutorial review covers the current applications of blockchain technology for molecular modeling in physics, chemistry, and biology, and provides a step-by-step tutorial for computational scientists looking to use blockchain computers to simulate physical and scientific processes in general. Simulations of carbon monoxide have been carried out using molecular dynamics software on the Ethereum blockchain in order to facilitate the tutorial

    The impact of sulfur functionalisation on nitrogen-based ionic liquid cations

    Get PDF
    It has been demonstrated that bonding and interactions within ionic liquids (ILs) can be elegantly tuned by manipulation of structure and the the introduction of functional groups. Here we use XPS to investigate the impact of sulfur containing substituents on the electronic structure of a series N-based cations, all with a common anion, [NTf2]-. The experiments reveal complexity and perturbation of delocalised systems which cannot be easily interpretated by NMR and XPS alone, DFT provides critical insight into bonding and underpins the assignment of spectra and development of deconstruction models for each system studied

    Density functional theory calculations of the non-resonant and resonant X-ray emission spectroscopy of carbon fullerenes and nanotubes

    Get PDF
    The non-resonant X-ray emission spectroscopy of fullerenes and carbon nanotubes is studied with density functional theory in conjunction with short-range corrected functionals. For C60 and C70 the X-ray emission spectra are insensitive to modest structural changes, and absorption onto the fullerene cage has the greatest effect with a broader less structured band observed with the high energy ⇡ band reduced in intensity. For carbon nanotubes the X-ray emission spectra are shown to be weakly dependent on the length and chirality of the nanotube. However, some variation with the diameter of the tube is observed in both resonant and non-resonant spectra

    Dewar Benzenoids Discovered in Carbon Nanobelts

    Get PDF
    © 2020 American Chemical Society. The synthesis of cyclacene nanobelts remains an elusive goal dating back over 60 years. These molecules represent the last unsynthesized building block of carbon nanotubes and may be useful both as seed molecules for the preparation of structurally well-defined carbon nanotubes and for understanding the behavior and formation of zigzag nanotubes more broadly. Here we report the discovery that isomers containing two Dewar benzenoid rings are the preferred form for several sizes of cyclacene. The predicted lower polyradical character and higher singlet-triplet stability that these isomers possess compared with their pure benzenoid counterparts suggest that they may be more stable synthetic targets than the structures that have previously been identified. Our findings should facilitate the exploration of new routes to cyclacene synthesis through Dewar benzene chemistry

    Simulation of Two-Dimensional Infrared Spectroscopy of Peptides Using Localized Normal Modes

    Get PDF
    Non-linear two-dimensional infrared spectroscopy (2DIR) is most commonly simulated within the framework of the exciton method. The key parameters for these calculations include the frequency of the oscillators within their molecular environments and coupling constants that describe the strength of coupling between the oscillators. It is shown that these quantities can be obtained directly from harmonic frequency calculations by exploiting a procedure that localizes the normal modes. This approach is demonstrated using the amide I modes of polypeptides. For linear and cyclic diamides, and the hexapeptide Z-Aib L-Leu-(Aib)2-Gly- Aib-OtBu, the computed parameters are compared with those from existing schemes, and the resulting 2DIR spectra are consistent with experimental observations. The incorporation of conformational averaging of structures from molecular dynamics simulations is discussed, and a hybrid scheme wherein the Hamiltonian matrix from the quantum chemical local-mode ap- proach is combined with fluctuations from empirical schemes is shown to be consistent with experiment. The work demonstrates that localized vibrational modes can provide a foundation for the calculation of 2DIR spectra that does not rely on extensive parameterization and can be applied to a wide range of systems. For systems that are too large for quantum chemical harmonic frequency calculations, the local mode approach provides a convenient platform for the development of site frequency and coupling maps
    corecore