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Abstract

The non-resonant X-ray emission spectroscopy of fullerenes and carbon nan-

otubes is studied with density functional theory in conjunction with short-range

corrected functionals. For C60 and C70 the X-ray emission spectra are insensi-

tive to modest structural changes, and absorption onto the fullerene cage has

the greatest e↵ect with a broader less structured band observed with the high

energy ⇡ band reduced in intensity. For carbon nanotubes the X-ray emission

spectra are shown to be weakly dependent on the length and chirality of the

nanotube. However, some variation with the diameter of the tube is observed

in both resonant and non-resonant spectra.

Keywords: X-ray emission spectroscopy, fullerenes, carbon nanotubes,

density functional theory

1. Introduction

The increasing availability of synchrotron sources and free-electron lasers

has led to spectroscopic techniques in the X-ray region being applied in a wide

range of research areas [1–4]. One advantage of these techniques compared with

other spectroscopic methods is that they are element specific and can provide5

a local probe of structure. More recently, these techniques have been used to
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study ultrafast chemical processes through time-resolved measurements [5–7].

There are several commonly used spectroscopic techniques in the X-ray region

which can provide complementary information. For example, X-ray emission

spectroscopy (XES) probes the occupied orbitals while X-ray absorption spec-10

troscopy (XAS) probes the unoccupied orbitals. Resonant inelastic X-ray scat-

tering (RIXS) represents an extension of XES wherein the intermediate state is

a core-excited state rather than the core-ionised state in XES. Simulations of X-

ray spectroscopy can play an important role in interpreting and understanding

spectra measured by experiment. Within the framework of density functional15

theory (DFT), X-ray absorption spectra are commonly simulated using either

transition-potential or time-dependent density functional theory (TDDFT) ap-

proaches [8, 9]. Accurate core-excitation energies can be obtained from TDDFT

calculations with the use of short-range corrected (SRC) functionals [10] and it

has been shown how these calculations can be applied to study large systems20

[11].

There has been less focus on the calculation of XES, one approach is to apply

TDDFT or equation of motion coupled cluster theory to a reference determinant

describing the core-ionised state [12], and these approaches have been applied to25

study the XES of organic [13] and inorganic [14, 15] molecules. Alternatively,

X-ray emission spectra can be determined directly from a Kohn-Sham DFT

calculation. In this approach the transition energy is evaluated from the orbital

energies of the valence orbital (✏
v

) and core orbital (✏
c

)

�E = ✏
v

� ✏
c

. (1)

The associated intensity can be determined from the following transition matrix30

element

f / |h�
c

|µ̂|�
v

i|2 (2)

where a valence orbital (�
v

) is taken to be the initial state and the final state is

a core orbital (�
c

). Recently, it has been shown that this approach can provide
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accurate X-ray emission spectra when the DFT calculation is performed with

a SRC exchange-correlation functional [16]. These functionals were introduced35

for the calculation of X-ray absorption spectra and incorporate an increased

fraction of Hartree-Fock exchange in the short range (low r12) in the evaluation

of the exchange energy contribution. It was demonstrated that this approach

could be extended to simulate RIXS in a two-step procedure where a reference

determinant describing the intermediate core-excited state is used in the Kohn-40

Sham DFT calculation. Although it was necessary to average over a number

of structures from a molecular dynamics (MD) simulation in the core-excited

state to achieve a reasonable agreement with experiment. The importance of

including vibrations via molecular dynamics sampling has also been observed

in earlier work [17]. The advantage of these approaches is that determining the45

XES spectra adds no significant computation cost relative to the cost of the

Kohn-Sham DFT calculation, allowing large systems to be studied.

Carbon nanomaterials, including fullerenes and carbon nanotubes (CNT),

have been the focus of considerable interest owing to their unique structural,50

mechanical and electronic properties. Spectroscopic methods are often used to

characterise the structure of these materials. For example, Raman spectroscopy

can provide information on the structure, bonding and environment of CNTs

[18] and graphene [19], including details on CNT diameter, chirality and de-

fects. One key mode is the radial breathing mode and the frequency of this55

mode is known to depend on the diameter of the CNT. A further band is the

disorder-induced D band, which is associated with sp3 defects in CNTs [20].

CNTs can also be studied using fluorescence [21] and nuclear magnetic reso-

nance spectroscopies [22, 23], and there has been a considerable e↵ort focused

on accurate simulations of the spectroscopy of these systems, for examples see60

references [24–30]. Spectroscopic studies have also shown that hydrogenation of

fullerenes has a significant e↵ect on its electronic structure. The ability to tune

the photophysical properties of C60Hx

has potential applications in a range of

devices where carbon based materials have a number of advantages compared
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to commonly used transition metal based quantum dot chromophores [31].65

Carbon nanomaterials have also been studied with X-ray spectroscopy. Kawai

and Motoyama reported X-ray emission spectra for solid C60 and C70 [32]. The

experimental spectra were compared with spectra simulated from the 2p density

of states from a Hartree-Fock theory calculation. The X-ray emission spectrum70

of C60 has also been measured and calculated by Heggie and co-workers [33].

The core-hole was treated as a nitrogen impurity in the Z+1 approximation and

the spectrum simulated from the p-projected density of occupied states. The

calculations reproduced the bands observed in experiment. Other fullerenes

have also been studied, for example the X-ray emission spectra of di↵erent iso-75

mers of C82 have been calculated [34] and the X-ray emission spectrum of bulk

K3C60 measured [35]. The XES of hydrofullerene (C60H36) [36] and fullerene

fluoride (C60F24) [37] has been studied. For both of these molecules, the distinct

bands present in the X-ray emission spectrum of C60 are not evident and only

a broad peak is observed. RIXS spectra have been reported for C60 and C7080

[38, 39]. For C60 there is a significant variation between the spectra excited at

di↵erent photon energies.

X-ray emission spectra for nanotubes have also been reported [40–42]. In

one study [40] four peaks were identified and spectra simulated based upon85

semi-empirical PM3 calculations using finite nanotube structures with the end

carbons capped with hydrogen atoms. Only small di↵erences between the spec-

tra for zigzag and armchair nanotubes were observed. X-ray emission spectra of

multi-walled nanotubes showed a small contraction in the high energy region of

the spectrum with decreasing diameter [41]. Resonant X-ray emission spectra90

showed a strong dependence on the diameter of the tubes at an excitation energy

of 285.5 eV, corresponding to a core! ⇡⇤ excitation [43]. It was suggested that

this might provide a technique to determine the mean tube diameter. In this

paper DFT calculations are used to study the X-ray emission spectra of carbon

fullerenes and nanotubes and study the sensitivity of the spectra to modifica-95
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tions of the structure. Subsequently, the extension of the calculations to study

the RIXS spectra of these materials is explored.

2. Computational Details

The structure of the fullerenes and nanotubes were optimised at the B3LYP/6-

31G* level of theory [44, 45]. The nanotube calculations used finite length100

nanotubes with enclosed (capped) ends, similar to those used in previous work

[25]. X-ray emission spectra were computed according to equations 1 and 2

from a Kohn-Sham DFT calculation using the short-range corrected SRC1r1

exchange-correlation functional [10]. Details of the methodology underlying the

calculations have been described fully elsewhere [16], and a more brief account105

is given here. In the SRC1r1 functional, the electron repulsion operator is par-

titioned according to

1

r12
⌘ CSHF

erfc(µSRr12)

r12
� CSHF

erfc(µSRr12)

r12
(3)

+ CLHF
erf(µLRr12)

r12
� CLHF

erf(µLRr12)

r12
+

1

r12

The first and third terms of equation 3 are treated with HF exchange and DFT

exchange used for the remaining terms. The four parameters in the functional,

CSHF, CLHF, µSR and µLR, determine the amount of Hartree-Fock exchange in110

the short and long range, and these parameters were optimised to reproduce

a set of core-excitation energies [10]. Two sets of parameters were optimised,

the first for excitations at the K-edge of first row nuclei and the second for

excitations from second row nuclei, and these functionals are denoted SRC1r1

and SRC1r2, respectively. These functionals correct the orbital energy of the115

core orbitals and result in more accurate transitions energies for X-ray emission

when evaluated from the di↵erent in the orbital energies. In the evaluation of

the transition matrix elements to determine the intensity, the final and initial

states are approximated by the valence and core molecular orbitals associated

with the transition (see equation 2).120
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The 6-31G* basis set was also used for the calculations of the X-ray emis-

sion spectra. For C60, there is little di↵erence between the spectrum computed

with this basis set and spectrum computed using the larger 6-311G* basis set

except that the spectrum for the 6-31G* is about 0.4 eV higher in energy. A125

comparison between these two calculated spectra is shown in the Supplemen-

tary Content. However, the small size of this basis set allows larger systems to

be studied more readily. Spectra were generated by convoluting the transitions

with Lorentzian functions with a width of 1 eV. All calculations were performed

with the Q-CHEM software package [46].130

A RIXS spectrum for C60 was computed using a similar approach but with

a reference determinant corresponding to a core to lowest unoccupied molecu-

lar orbital (LUMO) excited state. C60 has three degenerate LUMOs, however,

the resulting spectrum does not depend on which of these are occupied. The135

core excited state is maintained during the self-consistent field calculation by

using the maximum overlap method [47]. The B3LYP functional in conjunction

with the 6-31G* basis set was used for these calculations as suggested by pre-

vious work [16]. A spectrum is also computed by averaging over 100 structures

taken from an ab initio molecular dynamics simulation for the excited state.140

These structures were sampled at equal time intervals from a 24 femtosecond

simulation at 300 K.

3. Results and Discussion

Figure 1 shows the computed and experimental non-resonant X-ray emission

spectra for C60 and C70. For both C60 and C70 the calculations reproduce the145

shape of the experimental spectra well, although the calculations predict the

transition energies to be too high, and the calculated spectra need to be shifted

by -1.4 eV to align with experiment. The spectra have been decomposed into

contributions from � and ⇡ orbitals. The most intense bands in the spectra cor-

respond to transitions from � orbitals, while the high energy bands at 281.7 eV150
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Figure 1: Calculated and experimental non-resonant X-ray emission spectra for C60 and C70.

Upper spectra: experiment, adapted from references [36, 38]. Middle spectra: Calculated

SRC1r1/6-31G* spectra. Lower spectra: Calculated spectra decomposed into contributions

from � orbitals (solid blue line) and ⇡ orbitals (dashed red line).
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Figure 2: Calculated SRC1r1/6-31G* non-resonant X-ray emission spectra for modified C60,

including encapsulated Li

+
, vacancy defect and hydrofullerene.

and 283.0 eV in C60, and 280.8 eV and 282.7 eV in C70 arise from ⇡ orbitals. In

general the two molecules have similar spectra. One noticeable di↵erence is the

relative intensity of the two high energy bands associated with the ⇡ orbitals.

The calculations show that the lower energy band is more intense, while for

C70 the intensities are similar. This feature is also evident in the experimental155

spectra.

In order to explore the sensitivity of the X-ray emission spectra to struc-

tural modifications of the fullerene cage, Figure 2 shows computed spectra for

C60 with an encapsulated Li+ ion, a vacancy defect and with adsorbed hydro-160
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gen atoms (hydrofullerene C60H36). For each system the structure has been

re-optimised and for C59 the ground state is a triplet state. Encapsulation of

Li+ results in no observable a↵ect on the computed X-ray emission spectrum.

The vacancy defect leads to some minor changes in the spectrum, particularly

in the ⇡ bands (C and D). However, changes of this magnitude are likely to165

be too small to be distinguished reliably in experiment. The greatest change is

observed for hydrofullerene, and the spectrum has fewer distinct features. The

bands A and B have merged, and the band D, arising from ⇡ orbitals, is greatly

diminished. This is not surprising since many of the carbons are now sp3 car-

bons, and with further saturation of the fullerene cage the intensity of this band170

would be expected to be reduced further. The band corresponding to C in the

spectrum does arise from an orbital that has ⇡ character, but this orbital also

has C-H � character. These findings are consistent with the experimental spec-

trum for C60H36 [36]. Based upon the systems studied here, the X-ray emission

spectra of fullerenes are insensitive to modest structural changes. Absorption175

onto the fullerene cage has the greatest e↵ect with a broader less structured

band observed and the high energy ⇡ band reduced in intensity.

Figure 3 shows the computed RIXS spectrum. The Kohn-Sham calculation

for the core-excited state results in an unoccupied orbital that is localised on180

one of the carbon atoms. The resulting spectrum is significantly di↵erent from

the non-resonant spectrum, however, there are some notable similarities. The

most intense bands arise from transitions from � orbitals while the high energy

bands correspond to transitions from ⇡ orbitals. In the case of C60 studied

here, incorporating vibrational coupling through averaging over structures from185

a molecular dynamics simulation has little e↵ect on the resulting spectrum. For

the RIXS spectrum, the agreement with the available experimental data is not

as good as for the non-resonant spectrum. The computed spectrum is closest to

the spectrum at an excitation energy of 283.9 eV which corresponds to the ris-

ing edge of the intense core! ⇡⇤ band [39]. We note that the simulation of the190

RIXS spectrum may be improved through the use of the Kramers-Heisenberg
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Figure 3: Calculated resonant X-ray emission (RIXS) spectra of C60. Upper spectrum: Cal-

culated SRC1r1/6-31G* spectrum for the optimised ground state structure. Middle spectrum:

Calculated SRC1r1/6-31G* spectrum averaged over 100 structures from an ab initio molecu-

lar dynamics simulation. Lower spectrum: Calculated spectra decomposed into contributions

from � orbitals (solid blue line) and ⇡ orbitals (dashed red line).
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Figure 4: Calculated and experimental non-resonant X-ray emission spectra for a model (9,0)

nanotube of length 30

˚

A. Upper spectrum: experiment, adapted from reference [41]. Mid-

dle spectrum: Calculated SRC1r1/6-31G* spectrum. Lower spectrum: Calculated spectrum

decomposed into contributions from � orbitals (solid blue line) and ⇡ orbitals (dashed red

line).

approach [48, 49], however, such an approach is currently beyond our current

capabilities for a system the size of C60.

The accuracy of the calculated non-resonant X-ray emission spectra for C60195

and C70 provides some confidence that the methodology can be applied to car-

bon nanotubes. The calculated spectrum for a (9,0) nanotube of length 30 Å is

shown in Figure 4 with an experimental spectrum available in the literature [41].

The computed spectrum has been shifted by the value of -1.4 eV determined for

C60. Despite di↵erences in the nature of the tubes in the measured sample and200
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Figure 5: Calculated SRC1r1/6-31G* non-resonant X-ray emission spectra for di↵erent nan-

otubes. a) (9,0) nanotubes of length 17

˚

A and 30

˚

A, b) (9,0) and (5,5) nanotubes and c) (6,0),

(9,0) and (10,0) nanotubes.

the (9,0) tube used in the calculations, the computed spectrum reproduces the

features observed in experiment accurately. The calculations show that peak

A arises from �-type orbitals while bands B and C correspond to orbitals of ⇡

character.

205

Figure 5 shows the variation in the computed X-ray emission spectra to the

structure of the nanotube. The calculations show that lengthening the (9,0)

tube from 17 Å to 30 Å has only a minor e↵ect on the spectrum. Similarly,

changing the chirality of the nanotunbe from zigzag to armchair also does not

change the spectrum. For both of these, there is a small change for the ⇡ orbital210

bands. The spectra showing the variation in diameter for (6,0), (9,0) and (10,0)
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nanotubes show that there is greater sensitivity to the diameter. Exploring

the variation in the spectra with diameter is limited to relativity narrow tubes

when using capped nanotube models. The diameters of the (6,0), (9,0) and

(10,0) nanotubes are 5.0 Å, 7.0 Å and 8.0 Å, respectively. Since the length of215

the nanotube is not a crucial factor, we have investigated the variation of the

spectra with diameter using short fragments of nanotube capped with hydro-

gen atoms. The structure of these fragments were produced from a nanotube

generator with a carbon-carbon bond length of 1.421 Å. For these spectra, only

transitions to the core orbitals of the carbon atoms of the inner rings are in-220

cluded. Including only these central carbons has the e↵ect of excluding e↵ects

arising from hydrogenation and also to minimise any e↵ects the length of the

fragments.

The diameters of the hydrogen-capped tubes studied are significantly larger,225

with the (24,0) nanotube having a diameter of about 18.8 Å. For the non-

resonant X-ray emission spectra, the main change in the spectra is at about

285 eV (Figure 6) with the bands associated predominantly with transitions

from ⇡-like orbitals. For this band there is a relative reduction in the intensity

as the diameter of the nanotube increases. There is also a noticeable change230

in the intensity at about 280 eV. Experimental studies have shown a depen-

dence of the intensity on the diameter of the nanotube in RIXS measurements

[43]. Computing non-resonant X-ray emission spectra for these nanotube mod-

els is challenging, and the method used for C60 where the core-excited state

is considered with the Kohn-Sham calculation proved problematic to converge.235

Consequently, we have adopted a more crude approach to estimate the RIXS

spectra of these systems. In this approach one carbon atom is replaced by a

nitrogen atom and a calculation performed on the resulting doublet state. The

rationale for this approach is that the additional electron occupied the LUMO

and the nitrogen nuclei represents a carbon nuclei with a core-hole. This is240

similar to the scheme used elsewhere to calculate non-resonant X-ray emission

of C60 [33]. The predicted excitation energies are too high, however, in the case

13
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Figure 6: Calculated non-resonant (a) and resonant (b) X-ray spectra for finite hydrogen-

capped nanotubes with di↵erent diameters. (24,0): solid black line, (18,0): dotted blue line

and (12,0): dashed red line.
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of C60 the resulting spectrum has a similar shape to the spectrum computed

with a core-hole. The resulting spectra for nanotubes using this approach are

also shown in Figure 6. These spectra have been shifted by -102.05 eV so that245

the maximum aligns with the non-resonant spectra. The calculated spectra do

show a reduction in the intensity of the peaks either side of the most intense

band as the diameter of the tube increases. This trend does match observations

from experiment [43] but the magnitude of the changes in the calculations is

much smaller.250

4. Conclusions

The calculation of the non-resonant and resonant X-ray emission spectra

of carbon fullerenes and nanotubes using DFT has been investigated. Non-

resonant X-ray emission spectra can be computed accurately with short-range

corrected exchange-correlation functionals and modest sized basis sets. The255

spectrum for C60 did not show significant changes on encapsulation of a Li+ ion

or the presence of a vacancy defect. Absorption of hydrogen (hydrofullerene)

gave a broad, less structured band with a reduction in intensity of the high

energy bands associated with ⇡ orbitals. Similarly, for nanotubes the non-

resonant spectra were insensitive to changes in length and chirality but did show260

some dependence on the diameter of the nanotubes. Simulating the resonant

X-ray emission spectra (RIXS) is more challenging and the agreement with

experiment is poorer. Two approaches have been used, one involving explicit

consideration of the core-excited state and a simpler scheme where a carbon

atom is substituted with nitrogen. The calculations show that for C60 the most265

intense bands arise from transitions from � orbitals, with higher nervy bands

corresponding to ⇡ orbitals. Inclusion of vibrational coupling through sampling

structures from an ab initio molecular dynamics simulation had little e↵ect on

the resulting spectrum compared with the spectrum for the optimised ground

state structure. For nanotubes. the calculations indicate some dependence on270

the diameter of the nanotube in non-resonant spectra.
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[48] F. Gel’mukhanov, H. Ågren, Resonant inelastic x-ray scattering with

symmetry-selective excitation, Phys. Rev. A 49 (1994) 4378–4389.
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