795 research outputs found

    Suspension by regular and groupy waves over bedforms in a large wave flume (SISTEX99)

    Get PDF
    Suspended sand concentrations and bedforms under waves were measured in the controlled environment of a large wave flume. Three suspension conditions are discussed here; those occurring with regular (monochromatic) waves of height 0.55m over anorbital ripples, regular waves 1.0m high over orbital bedforms, and repeating wave groups (with a significant wave height of 0.6m) also over orbital-scale features. In all cases the wave-to-wave variability in suspended load was high (∼30%). Patterns of suspension were dependent on the bedform type and on instrument location relative to the bedform. Regular waves suspended an order of magnitude more sediment than groupy waves with a similar significant wave height illustrating,the importance of sequences of high waves in pumping-up sediment concentration into the water column

    Low-terahertz transmissivity with a graphene-dielectric micro-structure

    Get PDF
    In this paper, we report on the analysis of transmissivity of electromagnetic waves through a stack of dielectric slabs loaded with atomically thin graphene sheets at low-terahertz frequencies. It is observed that the structure supports a series of bandpass regions separated by bandgap regions, similar to the case of stacked metallic meshes separated by dielectric slabs at microwave/THz frequencies or metal-dielectric stack at optical frequencies. The transmission resonances in the bandpass region are identified as coupled Fabry-Pérot resonances associated with the individual dielectric slabs loaded with graphene sheets. The study is carried out using a simple circuit theory model, with the results verified against the numerical simulations

    Generalized additional boundary conditions and analytical model for multilayered mushroom-type wideband absorbers

    Get PDF
    We present an analytical model to study the reflection properties of a multilayered wire media loaded with 2-D arrays of thin imperfect conductors. Based on charge conservation, generalized additional boundary conditions (ABCs) for the interface of two uniaxial wire mediums loaded with thin arbitrary imperfect conductors at the junction are derived. It is observed that by proper selection of the structural parameters, the mushroom structure acts as a wideband absorber for an obliquely incident TM-polarized plane wave. The presented model along with the new ABCs are validated using the full-wave numerical simulations

    New absorbing boundary conditions and analytical model for multilayered mushroom-type metamaterials: Applications to wideband absorbers

    Get PDF
    An analytical model is presented for the analysis of multilayer wire media loaded with 2-D arrays of thin material terminations, characterized in general by a complex surface conductivity. This includes the cases of resistive, thin metal, or graphene patches and impedance ground planes. The model is based on the nonlocal homogenization of the wire media with additional boundary conditions (ABCs) at the connection of thin (resistive) material. Based on charge conservation, new ABCs are derived for the interface of two uniaxial wire mediums with thin imperfect conductors at the junction. To illustrate the application of the analytical model and to validate the new ABCs, we characterize the reflection properties of multilayer absorbing structures. It is shown that in such configurations the presence of vias results in the enhancement of the absorption bandwidth and an improvement in the absorptivity performance for increasing angles of an obliquely incident TM-polarized plane wave. The results obtained using the analytical model are validated against full-wave numerical simulations.NASA/MS Space Grant Consortium Research Infrastructure Program NG05GJ72HMinisterio de Ciencia e Innovación TEC2010-16948, CSD2008-00066Junta de Andalucía P09-TIC-459

    Quantization and Compressive Sensing

    Get PDF
    Quantization is an essential step in digitizing signals, and, therefore, an indispensable component of any modern acquisition system. This book chapter explores the interaction of quantization and compressive sensing and examines practical quantization strategies for compressive acquisition systems. Specifically, we first provide a brief overview of quantization and examine fundamental performance bounds applicable to any quantization approach. Next, we consider several forms of scalar quantizers, namely uniform, non-uniform, and 1-bit. We provide performance bounds and fundamental analysis, as well as practical quantizer designs and reconstruction algorithms that account for quantization. Furthermore, we provide an overview of Sigma-Delta (ΣΔ\Sigma\Delta) quantization in the compressed sensing context, and also discuss implementation issues, recovery algorithms and performance bounds. As we demonstrate, proper accounting for quantization and careful quantizer design has significant impact in the performance of a compressive acquisition system.Comment: 35 pages, 20 figures, to appear in Springer book "Compressed Sensing and Its Applications", 201

    On the covariant quantization of tensionless bosonic strings in AdS spacetime

    Get PDF
    The covariant quantization of the tensionless free bosonic (open and closed) strings in AdS spaces is obtained. This is done by representing the AdS space as an hyperboloid in a flat auxiliary space and by studying the resulting string constrained hamiltonian system in the tensionless limit. It turns out that the constraint algebra simplifies in the tensionless case in such a way that the closed BRST quantization can be formulated and the theory admits then an explicit covariant quantization scheme. This holds for any value of the dimension of the AdS space.Comment: 1+16 pages; v4 two clarifications adde

    Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources

    Get PDF
    We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > 10310^3 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples
    corecore