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1. Introduction

The history of homogenization methods describing the interaction of electromagnetic waves
with materials/matter (formed by a large number of periodic metal-lattices/atoms) goes a
long way back (see, for a detailed historical review, the books by [1] and [2]). Typically,
these methods are applied when the size of the material inclusions is small compared to the
wavelength of the incident wave. In such cases, the microscopic fluctuations are averaged out
to obtain smooth and slowly varying macroscopic quantities that can be used to characterize
the long range variations of the electromagnetic waves [3].

In recent years, there has been an increased interest in homogenization methods
characterizing artificial materials (such as metamaterial structures). In particular, materials
that constitute wire media have attracted special attention, due to their ability in enabling
interesting phenomena such as negative refraction [4, 12] and sub-wavelength imaging [6, 7],
among others. It has been recently shown in [8] that wire media exhibits strong spatial
dispersion at microwaves, and that the constitutive relations between the macroscopic fields
and the electric dipole moment are non-local [5]. Due to the non-local character of the
material, solving the reflection and transmission problems at interfaces associated with wire
media becomes difficult. This is because the non-local character of the material enables it
to support extra (or extraordinary) waves, which in general are not supported by materials
with local responses. To overcome this, uniquely solved ABCs [9–11, 13] which are pertinent
to the specific problem (composition of the structure) can be introduced.

In [10], the scattering problem of a wire-medium slab (consisting of long parallel array
of thin-metallic wires normal to the interface) was solved by deriving an ABC at the
interface of the wire medium and a dielectric material. Here the ABC was derived based
on the fact that the microscopic current must vanish at the tip of the wires and that the
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macroscopic fields must satisfy the ABC at the interface. The above result was extended to
study the reflection characteristics of a textured surface [9], wherein the metallic wires are
connected to a ground plane. In this scenario, the ABC was derived by taking into account
that the microscopic electric charge density vanishes at the connection of wire end to the
ground plane. Later, the ABC developed in [9] was applied to characterize the reflection
and transmission properties of the single-layer [14, 15] and multilayer mushroom-type
structures [17] (composed of metallic patches). It should be noted that these structures
(single-layer and multilayer) were shown to suppress spatial dispersion in wire media. This
is because the presence of metallic patches at the wire ends diminishes charge buildup
in such a way that, upon homogenization, the mushroom structure can be treated as
a uniaxial continuous Epsilon-Negative (ENG) material loaded with a capacitive grid of
patches. Further, in [13] generalized additional boundary conditions (GABCs) have been
derived for wire media terminated with distributed loads (metallic patch arrays acting as
parallel loads to the wires) and lumped loads (arbitrary impedance insertions acting as
series loads to the wires) or a combination of both at the junction, with the latter case
presented in [18, 19]. Although, the GABCs derived in [13] are applied at the wire-to-patch
connection with the finite size of the patch (with certain restrictions imposed on the size of
the gap between the patches with respect to the separation of adjacent patch arrays), these
boundary conditions are valid only for perfect electric conductor terminations. However,
when the metallic terminations (patches) are thin (resistive) (or for no patch case [10]), the
charge accumulation and diffusion at the wire-to-patch interface (or charge accumulation
at the open wire end interface) becomes important (spatial dispersion effects have to be
considered), necessitating a new additional boundary condition at this interface [16], which
takes into account the finite conductivity of the material at the connection points. Upon
homogenization, these charge effects are reflected in the nonlocal slab permittivity. The ABC
developed in the later case (thin patch) is a generalized form from which one can easily
obtain the ABCs derived in [9] and [10].

The ABC derived in [16] can only be applied to a single-layer wire-medium slab terminated
with either PEC or thin resistive (metal/graphene) patches or a combination of both. It is
derived under the hypothesis that the material adjacent to it is either free space or a dielectric
filled material. However, for a more general configuration shown in Fig. 1 (where the metallic
wires of one wire-medium slab are connected to another wire medium with a thin resistive
patch at the junction), the ABC proposed in [16] cannot be applied.

In our recent paper [26] we further extend the theory of [16] and study the reflection
properties of a more general case of a multilayer mushroom-type structure composed of
thin resistive patches with a typical configuration shown in Fig. 1. Based on charge
conservation, new ABCs are derived at the interface of two uniaxial wire mediums with
thin imperfect conductors at the junction. The scattering problem is solved by imposing the
classical boundary conditions (at the thin resistive patch interface and at the ground plane),
and the new additional boundary conditions obtained at the wire-to-patch junctions. To
illustrate the application of the homogenization model with the new ABCs, we characterize
the reflection properties of the multilayer structure, demonstrating that such a configuration
with proper choice of the geometrical parameters acts as an absorber. Interestingly, it is
noticed that the presence of vias results in the enhancement of the absorption bandwidth
and an improvement in the absorptivity performance for increasing angles of the obliquely
incident TM-polarized plane wave. The results obtained using the homogenization model
for the proposed structure are validated against full-wave numerical simulations.
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Figure 1. Geometry of a multilayer mushroom structure formed by periodically loading a grounded wire medium with thin

resistive patches.

The chapter is organized as follows. In Section 2, at first, a review of the ABCs for the
wire media is provided. Then, generalized ABCs at the wire-to-thin-resistive-patch junction
are derived and the formalism of the nonlocal homogenization model is presented for the
analysis of the reflection characteristics of the multilayer mushroom-type structure. The
results of the single-layer, two-layer, and three-layer mushroom structures composed of thin
resistive patches are discussed in Section 3. Finally, concluding remarks are given in Section 4.

2. Homogenization of multilayered mushroom-type HIS structures

In this section, at first a brief review of the recently derived ABCs [9, 10, 16] for wire media
with applications to mushroom structures [14–17] is given (see Section 2.1). It should be
noted that the configurations studied in [14–16] are single-layer mushroom structures (wire
media loaded with patch arrays) with/without ground planes, and the one studied in [17]
was a multilayer mushroom structure without a ground plane. In all these cases, except the
one studied in [16], the vias, the patches, and the ground plane have all been assumed to be
perfect electric conductors (PECs). In [16], the vias, and the ground plane are assumed to
be PECs, however, the patch is a thin 2-D material. In [26] we study a multilayer structure
(shown in Fig. 1) that is backed by a perfect electrically conducting ground plane, and
assume that the vertical wires are PEC conductors and that the patches are arbitrary thin
resistive materials. Secondly, we show the derivation of ABCs for the interface of two uniaxial
wire mediums with thin imperfect conductors at the junction (see Section 2.2). Finally,
the reflection problem of the multilayer structure (shown in Fig. 1) will be solved for the
obliquely incident TM-polarized plane waves (see Section 2.3).

Referring to [8], it is known that the wire-medium slab is strongly spatially dispersive, and
supports three different modes: transverse electric (TEx), transverse magnetic (TMx), and
transverse electromagnetic (TEM) modes. Since TE incident waves do not interact with the
wires, the study is restricted to only TM incident waves. In what follows, the term microscopic
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refers to currents and fields in the microstructure of the medium, i.e., on the wires and
patches of the actual physical structure. The term macroscopic refers to fields averaged over
the lattice period, i.e., the fields in the equivalent homogenized (continuous) medium. In the
following, a time variation of the form ejωt is assumed and suppressed.

2.1. Additional boundary conditions for wire media

The wire medium consists of an array of long metallic parallel wires arranged in a periodic
lattice as shown in Fig. 2. The wires are oriented along the x-direction and are embedded in a
host medium with permittivity εr. Solving the scattering problem for the wire-medium slab
(which supports three modes) with the regular classical boundary conditions is impossible.
To overcome this, an ABC is necessary. The ABC is derived by identifying some property of
the wire-medium slab which gives a relation between the macroscopic fields, which in turn
provides an extra degree of freedom to solve the scattering problem.

Figure 2. Geometry of a wire-medium slab with thickness h illuminated by a TM- polarized plane wave.

In [10], the authors showed that when the wire medium is adjacent to a nonconductive
medium (such as air) and that the wires are thin, the microscopic current must vanish at the
wire end x = x0,

Jc(x0) = 0 (1)

and that the macroscopic field must satisfy the ABC at the interface with air [11],

εrE · x̂|wire medium side = E · x̂|air side (2)

or, equivalently, the macroscopic field condition

k0εrEx(x0)− kzη0Hy(x0) = 0 . (3)

However, the ABC (3) is not valid when the wire medium is adjacent to a conducting material,
such as a perfect electrically conducting ground plane (shown in Fig. 3). In such a scenario,
the microscopic current (Jc) at the wire-to-patch interface does not vanish and thus the ABC
(3) is no longer applicable. The authors in [9, 10] have shown that it is relatively simple to
derive the boundary condition for the wire-to-PEC interface. More specifically, they proved
that the electric density of surface charge, σc, in a wire must vanish at the connection with
the PEC ground plane,
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Figure 3. Geometry of a wire-medium slab connected to a ground plane.

σc = 0 (at the interface) (4)

which necessitates that

dJc(x)

dx
|x=0+ = 0 (5)

or, in terms of macroscopic fields,

(

k0εr
dEx(x)

dx
− kzη0

dHy(x)

dx

)

|x=0+ = 0 . (6)

The above derived ABC (6) has been successfully applied by many researchers to various
configurations of interest in which wire media were connected to one or many conducting
elements (2-D array of patches). The most important of these configurations is the so-called
mushroom structure [21] (wire media loaded with PEC pacthes and backed by a ground
plane) which can be used in the design of high-impedance surfaces [14, 15] (shown in Fig.
4(a)) and metamaterials with negative refraction [17] (shown in Fig. 4(b)), among others.

(a) (b)

Figure 4. Mushroom-type wire medium structure: (a) Single-layer structure. (b) Multilayered structure.
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However, this ABC applies only to a wire-to-PEC interface. When the skin depth is
such that the field penetrates throughout the material, the PEC model is a very poor
approximation of the actual physics. In this case, we need an ABC for a wire connected
to an imperfect conductor, or, more generally, to an arbitrary material characterized by its
complex conductivity. The same problem occurs when trying to model the ground plane
or patch as a 2-D material, such as graphene or a 2-D electron gas. To answer this, the
authors in [16] derived a generalized ABC for the wire-thin-metal-patch interface. The ABC
is derived based on the principle of conservation of charge and that the microscopic wire
current must satisfy the boundary condition,

(

Jc(x) +
σ2D

jωε0εr

dJc(x)

dx

)

|x=h− = 0 (7)

or, in terms of macroscopic field condition,

(

1 +
σ2D

jωε0

d

dx

) [

k0Ex(x)−
kzη0

εr
Hy(x)

]

|x=h− = 0. (8)

In the limiting case of σ2D → 0, we have the wire medium (bed-of-nails) result (3), and for
σ2D → ∞, we have the PEC patch result (6). Hence, (7) is the generalized form of ABC for
the wire-thin-metal-patch interface (or for any conductivity of the thin-resistive patch).

The ABC (7) is valid as long as the material adjacent to it is nonconductive (such as air). If
there is another spatially dispersive material (such as wire media) adjacent to it (see Fig. 1),
then the ABC given by (7) is no longer valid. In the next subsection we derive a generalized
ABC for the two uniaxial wire media with a thin resistive patch at the junction [26]. However,
when two wire mediums are connected with a PEC patch at the junction (see Fig. 4(b), for
the multilayer structure with PEC patches), GABCs similar to those proposed in [13] (for the
PEC patches) have to be considered at the connection x = x0:

dJc(x)

dx

∣

∣

∣

∣

x+
0

+
dJc(x)

dx

∣

∣

∣

∣

x−
0

=
2C

C0

[

Jc(x+0 )− Jc(x−0 )
]

(9)

dJc(x)

dx

∣

∣

∣

∣

x+
0

−
dJc(x)

dx

∣

∣

∣

∣

x−
0

= 0 (10)

where C is the capacitance of the wires and C0 is the capacitance of the metallic patch which
depends on the period a and gap g (the values of C and C0 are defined in [13]). These
ABCs are accurate for moderate and large gaps between the patches, provided the distance h
between the metallic patches in adjacent layers is much greater than g. When the gap between
the patches reduces and C0 → ∞, we have a perfect electric conducting ground plane with the
ABCs (9), (10) reduced to dJc(x)/dx|x+

0
= dJc(x)/dx|x−

0
= 0, which is the same expression

obtained above from (5). The PEC-ABC (5) is applicable at the junction of wire-PEC-wire
interface, because the electric surface charge density on the wires will vanish independently
at the junction making the fields in one media independent of the other. However, for the
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case of thin-resistive patch at the junction, this is not the case, where charge diffusion and
accumulation takes place with the fields in one wire media interacting with the ones in the
other. Hence an ABC is necessary for this kind of interface (wire-thin-resistive-patch-wire).

2.2. Additional boundary condition for the junction of uniaxial wire media with
thin resistive patch at the interface

Consider a plane wave incident on the configuration shown in Fig. 5, which consists of two
uniaxial wire mediums with a thin resistive sheet (or in general, an arbitrary 2-D material
such as graphene or a 2-D plasma characterized by a complex surface conductivity) placed at
the interface x = x0. Let a be the lattice period, σ2D be the complex surface conductivity of the
thin resistive patch (such as graphene patches with the surface conductivity given in [22]),
r1 and r2 be the wire radii with r1,2 ≪ a, and εr,1 and εr,2 be the corresponding dielectric
host material for the two uniaxial wire media. For thin materials with bulk conductivity σ3D,
the surface conductivity can be written as σ2D = σ3Dt = 1/Rs, where t ≪ δ is the material
thickness, δ =

√

2/ωµ0σ3D is the skin depth, and Rs is the sheet resistance. To understand
how a thin resistive material (with bulk conductivity) is made see [29]. The resistive sheets
can also be realized using commercially available resistive materials.

Due to the presence of discontinuities at the junction (sheet and different properties of the
wire media, i.e., different wire radii and host permittivities) one can expect irregularities
in the charge and the current distributions close to the junction. Let Jw,1 and Jw,2 be the
microscopic current densities on the surface of the wires in mediums 1 and 2, and ρs1 and ρs2

be the surface charge densities on the PEC wires with radii r1 and r2, respectively, which are
given by ρs1(x) = ε0εr,1En1(x) and ρs2(x) = ε0εr,2En2(x), where En1 and En2 are the normal
components of the microscopic electric fields at the wire surfaces. On the thin conductive
sheet, assumed local and isotropic, the microscopic current and the field are related as
Js(y, z) = σ2DEt, where Js is the surface current density and Et is the tangential electric
field on the sheet. It should be noted that the tangential fields on the sheet in mediums 1
and 2 are assumed to be continuous at x = x0, i.e.,

Et1(x−0 ) = Et2(x+0 ) = Et . (11)

Considering that, at the wire-to-sheet and sheet-to-wire connection points (x+0 and x−0 ) the
electric fields normal to the wires are the same as the tangential fields on the thin resistive
sheet, we can write

En1(x−0 ) = Et1(x−0 ) = ρs1(x−0 )/(ε0εr,1) (12)

En2(x+0 ) = Et2(x+0 ) = ρs2(x+0 )/(ε0εr,2) . (13)

From the continuity equation for the wires ρsi = −(1/jω)dJw,i(x)/dx (i = 1, 2) one can
write the surface charge densities at the connection points (x+0 and x−0 ) as

ρs1(x−0 ) = −(1/jω)(dJw,1(x)/dx)|x−
0

(14)

ρs2(x+0 ) = −(1/jω)(dJw,2(x)/dx)|x+
0

. (15)
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Figure 5. Geometry of a junction of two wire mediums with a thin resistive sheet at the interface.

Applying Kirchoff’s current law (conservation of charge) at the junction of two wire mediums
with thin resistive sheet at the interface (from Fig. 5), we have

Js = Jw,1 − Jw,2 . (16)

Using (11), the surface current density can be expressed as

Js = σ2DEt = σ2DEt1(x−0 ) = σ2DEt2(x+0 )

= σ2D[Et1(x−0 ) + Et2(x+0 )]/2 . (17)

Equating now (16) and (17), we have at the connection points

σ2D[Et1(x−0 ) + Et2(x+0 )]/2 = [Jw,1(x−0 )− Jw,2(x+0 )] . (18)

Substituting the tangential fields (12)-(13) in (18), we can write

σ2D[ρs1(x−0 )/(ε0εr,1) + ρs2(x+0 )/(ε0εr,2)]/2 = [Jw,1(x−0 )− Jw,2(x+0 )] . (19)

Now, using the surface charge densities of the two wires (14)-(15), in (19) we obtain the ABC

σ2D

2jωε0

[

1

εr,1

dJw,1(x)

dx
|x−

0
+

1

εr,2

dJw,2(x)

dx
|x+

0

]

+ [Jw,1(x−0 ) − Jw,2(x+0 )] = 0. (20)
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Using the fact that the tangential fields are continuous at the thin conductive sheet interface
(11), we obtain the second ABC for the microscopic wire current,

1

εr,1

dJw,1(x)

dx
|x−

0
−

1

εr,2

dJw,2(x)

dx
|x+

0
= 0 . (21)

In the next section, it will be shown that the ABCs (20) and (21) along with the classical
boundary conditions will completely characterize the reflection properties of the multilayer
mushroom-type HIS structure (shown in Fig. 1). Also, it is worth noting that the
conditions (20) and (21) derived in this section are rather general and applicable to the cases
of different conductivities of the thin conductive sheet at the wire-medium junction. In the
limiting case of σ2D → 0 (transparent sheet), we have a continuous wire-medium slab with

simple continuity conditions for the current: Jw,1(x−0 ) = Jw,2(x+0 ) and ε
−1
r,1 dJw,1(x)/dx|x−

0
=

ε
−1
r,2 dJw,2(x)/dx|x+

0
. For σ2D → ∞, we have a PEC conductor with the ABC for the wire

microscopic currents given by dJw,1(x)/dx|x−
0
= dJw,2(x)/dx|x+

0
= 0, i.e., the derivative of

each of the wire currents is independently zero at the connection points. This is consistent
with the result of the single-sided wire-medium junction with a PEC conductor [10].

For the limiting case of the same host material on either side of the thin resistive sheet
interface at x0 (i.e., εr,1 = εr,2 = εr), the ABCs (20) and (21) can also be obtained by
enforcing the continuity of surface charge densities and using the Kirchoff’s current law
at the connection points x+0 and x−0 (the junction of wire media with thin resistive sheet

at the interface), i.e., ρs1(x−0 ) = ρs2(x+0 ) = ρs = ε0εr Js/σ2D = (ρs1(x−0 ) + ρs2(x+0 ))/2 and
Jw,1 = Js + Jw,2.

It is interesting to note that (20) and (21) yield two independent ABCs. At first sight, this
may seem inconsistent with the result of [16], which considered a single ABC to model the
interfaces of wire media with an imperfect conductor. However, the reason why we obtain
an extra ABC is quite simple. Here we consider the junction of two different wire mediums;
that is, we have a spatially dispersive material on both sides of the interface (a double-sided
wire-medium junction). Quite differently, the configuration considered in [16] consists of a
single-sided wire-medium junction because one of the semi-spaces separated by the interface
is free space. To show this, consider the two ABCs (20) and (21). Rewritting them, we have

[

1

εr,1

dJw,1(x)

dx
|x−

0
+

1

εr,2

dJw,2(x)

dx
|x+

0

]

= −
2jωε0

σ2D

[

Jw,1(x−0 )− Jw,2(x+0 )
]

= 0 (22)

1

εr,1

dJw,1(x)

dx
|x−

0
−

1

εr,2

dJw,2(x)

dx
|x+

0
= 0 . (23)

By solving (22) and (23) and rearranging the terms, we can write

1

εr,1

dJw,1(x)

dx
|x−

0
= −

jωε0

σ2D

[

Jw,1(x−0 )− Jw,2(x+0 )
]

. (24)
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Figure 6. Schematic of a generic multilayer mushroom structure formed by periodically loading grounded wire medium with

thin resistive square patches (side view).

Assuming that there is no second wire medium, we have Jw,2 = 0, then (24) can be expressed
as

1

εr,1

dJw,1(x)

dx
|x−

0
= −

jωε0

σ2D
Jw,1

(

x−0
)

. (25)

or,

Jw,1(x−0 ) +
σ2D

jωε0εr,1

dJw,1(x)

dx
|x−

0
= 0 (26)

which corresponds exactly to the ABC derived in ([16], Eq. (5)). Therefore, while a single
ABC is sufficient to describe the electrodynamics of a single-sided wire-medium junction,
the general case of a double-sided junction requires two ABCs due to the increased number
of degrees of freedom (i.e., extra waves can be generated on both sides of the junction).
Hence, (20) and (21) are generalizations of the simpler case studied in [16].

2.3. Nonlocal homogenization of the multilayered mushroom-type HIS structure

In this section, we show how the ABCs (20) and (21) derived in the previous section
are necessary to calculate the reflection properties of a multilayered mushroom-type HIS
structure for a obliquely incident TM-polarized plane wave (with the geometry as that
shown in Fig. 6). Each of the wires with via radii rl ≪ a (where a is the period of the
patches and vias) are embedded in a dielectric host media (which is homogeneous and
isotropic) of thickness hl , characterized by relative permittivity εr,l and permeability of free
space, and are loaded with 2-D periodic thin resistive patches of conductivity σ2D,l at the
interfaces dl , l = 1, 2, . . . , m. Here, we assume that the wires are lossless (PEC).

The wire-medium slab is characterized by the nonlocal dielectric function [8, 9]

εeff,l = ε0εr,l [εxx,l(ω, kx)x̂x̂ + ŷŷ + ẑẑ] (27)
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where εxx,l(ω, kx) = 1 − k2
p,l/(k

2
h,l − k2

x), kh,l = k0
√

εr,l is the wavenumber in the host

material, k0 is the wavenumber in free space, kp,l is the plasma wavenumber which depends

on the period and radius of the vias: k2
p,l = (2π/a2)/[ln(a/2πrl) + 0.5275], and kx is the

x-component of the wave vector k = (kx, 0, kz). Let Jw,l be the currents induced on the
metallic wires. It is known that for a TM plane-wave incidence, the wire medium excites
both TEM and TMx modes, and thus, following [9], the magnetic field in all space is given
by:

η0Hy = eγ0(x−dm) + Re−γ0(x−dm), air side: x > dm (28)

η0H
(l)
y = A+

TM,le
γTM,l(x−dl−1) + A−

TM,le
−γTM,l(x−dl−1) + B+

TEM,le
γTEM,l(x−dl−1)

+B−
TEM,le

−γTEM,l(x−dl−1), wire medium slab: dl−1 < x < dl (29)

where dl = h1 + h2 + . . . + hl , l = 1, 2, . . . , m, d0 = 0, η0 =
√

µ0/ǫ0 is the free-space
impedance, R is the reflection coefficient, A±

TM,l , B±
TEM,l are the amplitude coefficients of the

TM and TEM fields, γ0 =
√

k2
z − k2

0, εTM
xx,l = 1 − k2

p,l/(k
2
z + k2

p,l), γTEM,l = jk0
√

ǫr,l , γTM,l =
√

k2
p,l + k2

z − k2
h,l , and kz = k0 sin θi. The corresponding electric fields can be expressed as

follows:

Ez =
−jγ0

k0

[

eγ0(x−dm) − Re−γ0(x−dm)
]

, air side: x > dm (30)

E
(l)
z =

−jγTM,l

εr,lk0

[

A+
TM,le

γTM,l(x−dl−1) − A−
TM,le

−γTM,l(x−dl−1)
]

− jγTEM,l

εr,lk0

[

B+
TEM,le

γTEM,l(x−dl−1) − B−
TEM,le

−γTEM,l(x−dl−1)
]

,

wire medium slab: dl−1 < x < dl (31)

E
(l)
x =

kz

εTM
xx,lk0εr,l

[

A+
TM,le

γTM,l(x−dl−1) + A−
TM,le

−γTM,l(x−dl−1)
]

,

wire medium slab: dl−1 < x < dl . (32)

To calculate the unknown coefficients, R, A±
TM,l , B±

TEM,l , we impose boundary conditions at

x = 0, d1, d2, . . . , dm. Since, there are m dielectric layers and m interfaces, we have the total
number of unknowns as 4m+ 1 (i.e., four unknowns in each layer corresponds to 4m, and the
remaining unknown is R). Hence, 4m + 1 boundary conditions are necessary to calculate the
4m + 1 unknown coefficients. At the thin resistive patch interfaces (x = d±l , l = 1, . . . , m),
the macroscopic two-sided impedance boundary conditions establish that the tangential

electric (E
(l)
z ) and magnetic fields (H

(l)
y ), can be related via a sheet impedance, i.e.,

E
(l)
z |x=d+l

= E
(l)
z |x=d−l

= Zg,l

(

H
(l+1)
y |x=d+l

− H
(l)
y |x=d−l

)

(33)
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where Zg,l is the grid impedance of the thin conductive patches [16, 23, 24] given by

Zg,l =
a

(a − g)σ2D,l
− j

π

2ωε0(ε
qs
r,l)a ln(csc

πg

2a
)

(34)

where ε
qs
r,l = (εr,l + εr,l+1)/2 for interior patches (l = 1, 2, . . . , m − 1) and ε

qs
r,m = (εr,m + 1)/2

for the patch located at the upper interface (l = m). This gives 2m boundary conditions.
At the ground plane interface (x = 0+), we have two more boundary conditions [9]: i)

tangential macroscopic total electric field vanishes (E
(1)
z |x=0+ = 0) and ii) derivative of

current is zero (dJw,1(x)/dx|x=0+ = 0) or in terms of macroscopic fields [10]



k0εr,1
dE

(1)
x (x)

dx
− kzη0

dH
(1)
y (x)

dx



 |x=0+ = 0 . (35)

Following [16], the boundary condition at the top patch interface, x = d−m , can be written as

Jw,m(d
−
m) +

σ2D,m

jωε0εr,m

dJw,m(x)

dx
|d−m = 0 (36)

or, equivalently, the macroscopic field condition

(

1 +
σ2D,m

jωε0

d

dx

) [

k0Em
x (x)−

kzη0

εr,m
Hm

y (x)

]

|d−m = 0. (37)

This gives the total number of 2m + 3 conditions, clearly insufficient to calculate the 4m + 1
unknown coefficients, which makes apparent the need of the ABCs derived in Section 2.2.

At the junction of two wire mediums with thin conductive patches at the interfaces (x =
d±l , l = 1, . . . , m − 1) it is necessary to impose the ABCs (20) and (21) (with the assumption
that the gap between the patches is small), in addition to the boundary condition (33)

σ2D,l

2jωε0

[

1

εr,l

dJw,l(x)

dx
|d−l

+
1

εr,l+1

dJw,l+1(x)

dx
|d+l

]

+[Jw,l(d
−
l )− Jw,l+1(d

+
l )] = 0 (38)

1

εr,l

dJw,l(x)

dx
|d−l

−
1

εr,l+1

dJw,l+1(x)

dx
|d+l

= 0 . (39)

In terms of macroscopic fields, (38) and (39) can be rewritten as

(

1+
σ2D,l

2jωε0

d

dx

)[

k0E
(l)
x (x)−

kzη0

εr,l
H

(l)
y (x)

]

|d−l
=

(

1−
σ2D,l

2jωε0

d

dx

)[

k0E
(l+1)
x (x)−

kzη0

εr,l+1
H

(l+1)
y (x)

]

|d+l

(40)
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d

dx

[

k0E
(l)
x (x)−

kzη0

εr,l
H

(l)
y (x)

]

|d−l
=

d

dx

[

k0E
(l+1)
x (x)−

kzη0

εr,l+1
H

(l+1)
y (x)

]

|d+l
. (41)

Since there are m− 1 layers of two-sided wire-medium junctions, we have 2(m− 1) boundary
conditions and hence, the total number of boundary conditions are equal to 4m + 1. Using
the boundary conditions (33), (35), (8), (40), and (41), we can easily obtain a linear system
for the 4m + 1 unknowns of the problem. This system can be solved either numerically
or analytically for the unknown field coefficients, A±

TM,l and B±
TEM,l , and the reflection

coefficient R.

3. Numerical results

To illustrate the application of the proposed homogenization model, in this section we study
the reflection properties of different multilayered mushroom-type HIS structures. To test the
model, at first we analyze a single-layer wire medium loaded with an arbitrary material (a
thin copper patch with finite bulk conductivity and a graphene patch characterized by its
complex surface conductivity) at one end and a ground plane at the other. Next, we study
the prospects of the multilayered mushroom-type HIS structure being used as an absorber.
All the results obtained using the homogenization model are tested against the full-wave
numerical simulations.

3.1. Single-layer mushroom structure with thin metal/graphene patches

As a first example, a single-layer mushroom-type HIS structure with geometry shown in Fig.
7 is chosen. In this configuration, the patches are copper and have a thickness of 60 nm. The
parameters of the structure are: a = 2 mm, g = 0.2 mm, h = 1 mm, r0 = 0.05 mm, and
εr = 10.2. The analysis is performed for an obliquely incident TM-polarized plane wave.
Fig. 8(a) shows the comparison of reflection magnitude behaviors calculated using HFSS and
the proposed homogenization model for a TM-polarized plane wave incident at 30◦ to the
normal. Also, in Fig. 8(a) we have included the result obtained using the wire-PEC ABC
([10], or (6)). Clearly, one can notice the difference between the results obtained using the
ABC of the wire-PEC interface and the new ABC (GABC, wire-thin-metal interface - see (7)
or (26)). In fact, the result obtained using the GABC is in good agreement with the HFSS [31]
result.

Fig. 8(b) shows the behavior of reflection magnitude for a metal patch with σ3Dt = 0.058
S ( e.g. t = 20 nm and σ3D = 2.9 × 106 S/m). The remaining parameters are the same as
those considered in the previous example. Again, the results obtained using the new ABC
(wire-thin-metal interface) are in good agreement with the HFSS results, whereas the results
obtained using the old ABC (wire-PEC interface, (6)) deviate from the HFSS results.

Fig. 9 shows the reflection magnitude behavior for the mushroom structure loaded with
graphene patches with a chemical potential of µc = 0.5185 eV [see [22] for the surface
conductivity of graphene] for a plane wave incident at θ = 45◦. For example, at f =
11.96 GHz the complex surface conductivity, σ2D = 0.0304 − j0.0011 S. Clearly, excellent
agreement is seen between the GABC and the HFSS results. As is obvious, the ABC-PEC (6)
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Figure 7. (a) Mushroom-type wire-medium structure with thin metal/graphene patches: (a) Side-view showing incident TM

plane wave and (b) Top view of the structure.
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Figure 8. Reflection coefficient for a TM-polarized plane wave incident at θ = 30◦. (a) Copper patches with thickness 60 nm.
(b) A material patch with σ3Dt = 0.058 S.

and local model [14] results give significant errors since this ABC assumes that the surface
charge at the tip of the wires or at the wire-patch interface vanishes (4). This may hold true
for the wire-PEC interface, but does not apply for the wire-thin-metal/graphene interface.
This is because at the wire-thin-metal interface, charge accumulation and diffusion takes
place and the fields completely penetrate the metal. Hence, a new ABC (GABC) is required
to obtain the correct result.

Referring to Fig. 9, one can notice that the nonlocal model result (ABC-PEC) and the local
model result agree well with each other. This is because, for the large chemical potential
0.5185 eV considered in this example, it seems that the spatial dispersion effects in the wire
media are reduced, and the mushroom structure can be treated as a uniaxial continuous
Epsilon-Negative material loaded with PEC patches (although this is not the case with the
GABC, which sees the interface in a correct manner).
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Figure 9. Reflection coefficient of the mushroom structure loaded with graphene patches with θ = 45◦.

Overall Figs. 8 and 9 show the effectiveness of the new ABC. Hence, when a PEC wire is
connected to a thin-metal patch, as is the case considered here, the new ABC is the good
choice to obtain the correct result.

To understand the behavior (effects of spatial dispersion) of the grounded wire-medium slab
loaded with graphene patches, in Fig. 10 we plotted the normalized wire current along
the vias for different values of bias (µc). It can be noticed that for zero bias (µc = 0) the
current is quite nonuniform and as the bias increases, the current becomes more and more
uniform. This is because, for the case of zero bias the patch is almost transparent or in
other words its conductivity (σ2D) is very small (can be seen in Fig. 10) and behaves as a
dielectric material rather than a metal. As the bias increases, the conductivity increases and
the properties of the patch will be close to that of a metal (since, it is known that for a vias
truncated with a PEC patch the current is uniform [14]). Hence, the current starts to become
more and more uniform, indicating that the spatial dispersion effects are negligible and the
wire-medium slab can be treated as a uniaxial continuous Epsilon Negative material [14, 15]
loaded with patches. However, it should be noted that, despite the uniformity of the current
for the case of µc = 0.5185 eV, the homogenization model still needs an ABC to model the
graphene patch mushroom structure, indicating that spatial dispersion effects are important
for this structure. This is because, at the patch-to-wire interface, diffusion and accumulation
of charge occurs (unlike at a wire-to-PEC interface, where surface charge vanishes) and an
ABC is required to capture the physics.

By observing Figs. 8 and 9, one can notice a dip in the reflection magnitude curves for some
values of the conductivity or the thickness of the metal patch. This behavior of showing
reflection nulls allows the mushroom structures with thin-metal/graphene patches to be used
in absorber applications. By properly selecting the parameters of the mushroom structure,
one can easily obtain either a narrow band or even a wideband absorber. More on the design
and analysis of realizing the absorbers is explored in the next section.

3.2. Design and analysis of multilayered mushroom-type HIS structures with
applications to absorbers

In this section, we concentrate on the design and analysis of single-layer, two-layer, and
three-layer mushroom structures for obliquely incident TM-polarized plane waves using the
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Figure 10. Normalized wire current for a graphene patch mushroom structure for different values of bias at f = 14 GHz.

proposed homogenization model. All the configurations are loaded with thin resistive sheets.
The results obtained using the homogenization model are confirmed with the numerical
HFSS simulations.

3.2.1. Single-layer mushroom HIS structure with thin resistive patches

Understanding the mechanism of the multilayered mushroom-type HIS structure as an
absorber is quite a complicated task. Hence, to make it is easier to comprehend, we
begin with the design and analysis of a simpler case, i.e., a single-layered mushroom HIS
structure (with the geometry shown in Fig. 11). Although this structure is analyzed in
the previous section, the aim here is to show that by proper selection of the mushroom
structure parameters (such as periodicity, gap between the patches, height and permittivity
of the dielectric substrate, radius of the vias, and resistivity of the patches) one can obtain
remarkably attractive results (such as increase in the absorption bandwidth, enhancement in
the absorption level, among others).

(a)

y

z

a

a

g

2r0

(b)

Figure 11. (a) Single-layer mushroom-type HIS absorber with thin resistive patches. (b) Top view of the structure.

To show this effect, we considered the following parameters in the design of the absorber:
a = 6.8 mm, g = 0.5 mm, h = 3.5 mm, r0 = 0.08 mm, εr = 2.5, and Rs = 106.54 Ω. The sheet
resistance Rs, can be related to the grid impedance of the patch as follows: from (34) the grid
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impedance of the lossy patch array can be represented as a series RC circuit (Rg − j/(ωCg)),
where the real value corresponds to Rg (resistance per unit cell) given by a/((a − g)σ2D)
or Rsa/(a − g) and Cg is the capacitance of the patch grid whose value can be obtained
from (34). Although the selection of a particular value of Rs is a tedious process, the
procedure will be discussed later in this section. In order to show the advantage of the
mushroom-type absorber, we compare its reflection coefficient behavior against a similar
structure but without vias. Figs. 12(a) and 12(b) show the reflection magnitude curves for
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Figure 12. Comparison of analytical (solid lines) and full-wave HFSS results (crosses, circles, and plus signs) of the reflection

coefficient for the single-layer HIS absorber excited by a TM-polarized plane wave at oblique angles of incidence θ: (a) with vias.

(b) without vias.

30◦, 45◦, and 60◦ for a TM-polarized plane wave. Referring to the results shown in Fig.
12(a), one can see good agreements between the analytical results and the full-wave HFSS
results. The analytical results here are obtained using either the ABC given by (7) or (26)
obtained in Section 2.2 as a limiting case for a single-sided wire-to-patch junction. However,
the analytical results shown in Fig. 12(b) are obtained using the circuit theory model given
in [20, 24, 25]. By comparing Figs. 12(a) and 12(b) one can see that for the structure with vias,
the absorption bandwidth increases for increasing angles of incidence (i.e., the structure with
vias gives a better performance than the structure without vias), although, one can notice a
decrease in the absorption level for 30◦ and 45◦. Also, in Fig. 12(a) it is observed that the
lower frequency bound of the absorption band (around 6 GHz) is stable, which is in complete
contrast to the behavior of the structure without vias (Fig. 12(b)). This frequency stability
can be attributed to the increased interaction of the incident wave with the vias [30].

To comprehend the nature of the mushroom structure and its reasons to act as a wideband
absorber when compared to the structure without vias, we studied the reflection properties
(phase and magnitude) of the mushroom structure for various sheet resistivities for a
TM-polarized plane wave incident at 45◦ to the normal. Fig. 13 shows the reflection
phase and magnitude for various resistive values of the patch ranging from 0 (σ3Dt = ∞,
PEC case) to ∞ (σ3Dt = 0, transparent case) calculated using the nonlocal homogenization
model discussed in Section 2.3. Starting with the PEC case, i.e., Rs = 0, the reflection phase
behavior (shown in Fig. 13(a)) shows two resonances. One corresponding to 0◦ and the other
corresponding to 360◦ (shown in red circles) acting as a HIS at the two frequencies. These
resonances are such that one lies above the plasma frequency ( fp/

√
εr = 6.28 GHz) and

the other lies below fp/
√

εr, consistent with the result of the single-layer mushroom-type
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Figure 13. (a) Phase and (b) Magnitude of the reflection coefficient of the single-layer mushroom structure for different values

of sheet resistivity Rs (in Ω), θ = 45o.

HIS discussed in [14, 15] (although the dimensions and fp/
√

εr are different). With the
increase in Rs, one can notice a deviation in the phase behavior from the actual HIS behavior.
This deviation can be attributed to the change in the impedance of the mushroom structure
due to change in the value of Rs. This deviation is referred to as perturbed HIS behavior.
Corresponding to this in Fig. 13(b), the reflection magnitude curves show some deviations
as Rs changes. The results in Fig. 13(b) can also be treated as the perturbed behavior of the
HIS (the result of HIS when Rs = 0 is not included here, since its magnitude is unity).

At first glance, by noticing the results in Fig. 13(b) one might only comprehend that
for different values of Rs there are different lossy patches, and hence, different reflection
magnitudes. However, the results add meaning when they are seen with the increasing
values of resistivities. Starting from Rs = 27.8 Ω, the reflection magnitude curve (dashed
red curve) shows two partial nulls, which correspond closely to the two perturbed HIS
resonances (shown in Fig.13(a)). With the further increase in the sheet resistivity, the two
partial reflection nulls start to deviate in such a way that one of the null deepens and the
other null either subdues or remains the same. As mentioned before, this is because as Rs

changes, the grid impedance changes, which in turn changes the surface impedance of the
mushroom structure. For example, for Rs = 70.6 Ω one of the reflection nulls has reached its
minimum at 5.612 GHz (perfect match to free-space impedance) and the other reflection null
is at the around 20 dB level, which is same as that of the second reflection null of Rs = 27.8
Ω case. Similarly, one can only see one deep reflection null for Rs = 241.8 Ω at 13.25 GHz.
Based on these facts (how reflection nulls deviate), one can correlate the partial reflection
magnitude curves (for the case of Rs = 106.54 Ω) in Fig. 12(a) with the perturbed HIS
resonances. With the further increase in the sheet resistivity (for Rs = ∞, the patch array is
fully transparent and we have a grounded wire-medium slab), the reflection phase behavior
shown in Fig. 13(a) deviates further to the right and shows two resonances corresponding
to 0◦ and 360◦ (acting as a HIS). Hence, for any value of Rs between 0 and ∞, the behavior
of the structure should either resemble the properties of a perturbed HIS or a perturbed
wire-medium slab. Thus, by utilizing the two resonances of the mushroom structure, and
with the proper choice of the resistivity of the patch arrays one can increase the absorption
bandwidth. This behavior of the mushroom structure which shows two resonances makes it
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more attractive to consider compared to the structure without vias (which has only one HIS
resonance, even when perturbed).
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Figure 14. Normalized wire current in the single-layer mushroom structure for different values of sheet resistivity Rs (in Ω) at

f = 7GHz, θ = 45o.

To further validate that the behavior observed in Fig. 12(a) is in fact due to the perturbed
HIS behavior of the mushroom structure with PEC patches, we plotted the current behavior
for various Rs varying from 0 to ∞. Fig. 14 shows the normalized wire current in the
single-layer mushroom structure at f = 7 GHz. It can be observed that for small values of
resistivity (Rs = 0 to 120 Ω), the current is uniform, which indicates that spatial dispersion
effects are negligible (although requires the ABC (26)). This result is consistent with the
result shown in Fig. 10, where the current distribution was uniform for large values of σ2D

indicating that spatial dispersion effects were almost negligible (although it required the
ABC (26) to characterize the properties of the mushroom structure with graphene patches).
Also, it should be noted that the value of Rs chosen in the design of absorber shown in
Fig. 11 is in the range of 0 to 120.4 Ω, hence the current behavior will be uniform similar to
the case of mushroom structure with PEC patches, [14, 15]. Since, the current distribution is
uniform and the phase behavior is close to that of the mushroom structure with PEC patches,
the magnitude behavior or resonances of the absorber shown in Fig. 12(a) are indeed the
perturbed HIS resonances of the mushroom structure with PEC patches.

Although the increase in absorption bandwidth and the enhancement in the absorption level
is due to the presence of vias and proper choice of Rs, the absorption mechanism occurs
mainly due to the lossy patch array. Since, the amount of energy lost or energy absorbed
by the patch array is evaluated based on the value of Rs, it is important to determine
the right value of Rs in designing wideband absorbers. The most common way is to use
numerical optimization techniques such as [27, 28], among others. However, discussion of
these techniques is beyond the scope of this work. Since, the analytical model gives the results
instantaneously, it provides a reliable, fast, and efficient solution in selecting an optimum
sheet resistance of the patch arrays. The idea is to obtain a certain range for Rs (in the
range between the PEC case and wire-medium slab case) for each of the angles of incidence,
where perfect reflection nulls are noticed for one of the two perturbed HIS resonances of the
structure.
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Figure 15. Reflection magnitude of the single-layer mushroom structure for different values of sheet resistivity Rs (in Ω),

θ = 30o.

To obtain a range of values for Rs for different incident angles, we plotted the reflection
magnitude curves (shown in Fig. 15) for various Rs varying from 0 to ∞ (results for RS = 0
and ∞ are not included here) for a TM-polarized plane wave incident at 30◦ to the normal.
Clearly, one can notice the deviation of the reflection nulls as Rs is increased. Then, we fix
the range of Rs where perfect reflection nulls are obtained. Based on this fact, from Fig.
15, the range of Rs is 60.8 - 294.6 Ω. A similar procedure is repeated for θ = 60◦ and the
range of Rs is found to be 94.03-146.38 Ω. From Fig. 13(b), the range of Rs for 45◦ can be
given as 70.6-241.8 Ω. Then, based on these values of Rs, a unique range that fits for all
angles of incidence (up to 60o) can be found: (94.03 − 146.38) Ω for the case under study.
A further optimization procedure limited to the above range gives us an optimum value of
Rs = 106.54 Ω, which is the one used in the absorber design in Fig. 11.

3.2.2. Two-layer mushroom HIS structure with thin resistive patches

The goal of this section is two-fold. The first being the applicability of the derived ABCs
(Section 2.2) for the interface of two uniaxial wire media with thin resistive patches at the
junction. The second aim is to improve the performance of the single-layer mushroom
HIS absorber. To achieve these goals, we first design an absorber over a wide range
of frequencies (wider than the single-layer structure) using the homogenization model
(discussed in Section 2.3) and compare its results with the full-wave HFSS simulations.

Figure 16 shows the two-layer mushroom HIS absorber, which consists of two wire media
embedded in a dielectric host media, loaded with thin resistive patch arrays, and backed
by a ground plane. The parameters of the dielectric slabs used in the design together with
the dimensions and sheet resistivity values of the square patches are given in the caption of
Fig. 16. Figures 17(a) and 17(b) show the reflection magnitude behavior of the two-layer HIS
absorber with and without vias for oblique angles of incidence. At first instance, it is clear
that the structure with vias offers a significant improvement in the bandwidth, and at the
same time shows an enhancement in the absorption level when compared to the reference
structure without vias. For example, for θ = 60o, it can be noticed that the 20 dB absorption
bandwidth of the structure with vias covering the frequency band from 9.03 GHz to 25.29
GHz has a 55.5% bandwidth increase in comparison to the structure without vias with the
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Figure 16. Two-layer mushroom-type HIS absorber with thin resistive patches. Structural parameters used in this work:

h1 = h2 = 3.2mm, εr,1 = 2.2, εr,2 = 1.33, r1 = r2 = 0.05mm, a1 = a2 = 5mm, g1 = g2 = 0.1mm, Rs1 = 196 Ω,

Rs2 = 1078 Ω.

frequency band from 12.67 GHz to 18.86 GHz. Referring to Fig. 17(a), it can be noticed that
the results obtained using the nonlocal homogenization model agree very well with the HFSS
results in the entire frequency band. This also verifies the new ABCs derived in Section 2.2 for
the interface of two uniaxial wire media with thin resistive patch at the junction. This would
not be possible using the PEC-ABC (discussed in Section 3.1 for the single-layer mushroom
structure with thin metal/graphene patch), which indicates that the new ABCs are in fact
important to capture the physics at the thin resistive patch junction of two uniaxial wire
media.
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Figure 17. Comparison of analytical (solid lines) and full-wave HFSS results (crosses, circles, and plus signs) of the reflection

coefficient for the two-layer HIS absorber excited by a TM-polarized plane wave at oblique angles of incidence θ: (a) with vias.

(b) without vias.

Due to increased degrees of freedom in the two-layer structure when compared to the
single-layer structure, one can easily see the differences in the relative bandwidth of
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absorption of Figs. 17(a) and 17(b), when compared to Figs. 12(a) and 12(b). Even
though, the results of the two-layer mushroom structure show significant improvements in
the bandwidth and the absorption level, there can be many design solutions (with different
Rs) which can yield better results than that shown in Fig. 17(a). Hence, designing an absorber
with optimum performance, particularly with many degrees of freedom, is a challenging
task. The simpler way is to use the analytical procedure described in the previous section for
designing a single-layer mushroom absorber. Although, this procedure may seem simple for
the single-layer structure, implementing it for the two-layer structure is a tedious task and,
hence, that design procedure is not explained here for the sake of brevity. The other way is
to use the numerical optimization techniques [27, 28].
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Figure 18. a) Phase and (b) magnitude of the reflection coefficient of the two-layer mushroom structure for different values of

sheet resistivity Rs (in Ω), θ = 45o.

In order to understand the nature of the resonances or the wideband behavior of the
two-layer mushroom absorber, here we will use the strategy that was implemented to
study the wideband behavior of single-layer mushroom absorber, i.e., studying the reflection
magnitude behavior for various Rs ranging from 0 to ∞. Since, the value of sheet resistivity
for the patch arrays in the top layer is high (Rs = 1078 Ω) and low in the bottom layer
(Rs = 196 Ω), one can start the analysis either from the PEC case (Rs = 0 in both the
layers) or the wire-medium case (Rs = ∞ in both the layers). Then, either decrease the
sheet resistivities in both the layers at the same time (if the wire-medium case is considered)
or increase the sheet resistivities in both the layers at the same time (if the PEC case is
considered). The other way is start from either the PEC case or the wire-medium case, then
fix Rs in one layer while increasing the Rs in the other (if PEC case is chosen) or fix Rs in one
layer while decreasing the Rs in the other (if wire-medium case is chosen). Here, we employ
the later strategy, because the goal is to explain the wideband behavior of the absorber
with Rs1 = 196 Ω and Rs2 = 1078 Ω. Figures 18(a) and 18(b) show the reflection phase and
magnitude behavior of the two-layer mushroom HIS structure for different values of Rs. With
the resistivity of the top patch array being fixed and by gradually decreasing the resistivity
of the patch array in the bottom layer it is observed that the phase behavior starts to deviate
from the wire-medium slab case (shown in Fig. 18(a)). It is also observed from Fig. 18(b)
that the reflection nulls deviate for varying Rs, and for some cases there are perfect reflection
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nulls (similar to the behavior observed in a single-layer mushroom structure) corresponding
to the zero phases of the perturbed HIS resonances of the wire-medium slab.
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Figure 19. Normalized wire current in the two-layer mushroom structure for different values of sheet resistivity Rs (in Ω) at

f = 15 GHz, θ = 45o. Here h is the total thickness of the two-layer structure given by h1 + h2.

This proves the fact that the partial reflection nulls/resonances shown in Fig. 17(a) , for the
case of Rs1 = 196 Ω and Rs2 = 1078 Ω are associated with the perturbed HIS resonances
of the actual wire-medium slab. It should be noted that the bandwidth enhancement is
not only observed for higher angles of incidence, but also observed for smaller angles of
incidence. The difference is that for small angles of incidence the electric field interaction
with the vias is negligible, and the bandwidth enhancement is due to interactions between
the patches in the adjacent layers, and for higher angles of incidence vias play a dominant
role in widening the absorption band. Hence, by using the resonances of the mushroom
structure, along with the proper choice of dimensions and resistivities of the patch arrays,
and with good selection of the permittivities of the dielectric slabs (perforated with metallic
vias) the absorption bandwidth can be enlarged, as compared to the case with no vias.

The behavior of current along the vias has also been studied to validate that the resonances
are the perturbed HIS resonances of the wire-medium slab. Figure 19 shows the normalized
wire current in the two-layer mushroom structure at f = 15 GHz. For the values of Rs used
in Fig. 18, it can be observed from Fig. 19 that the current along the metallic vias varies
significantly, which indicates that the spatial dispersion effects are not suppressed. The
reason is that when the Rs is large (conductivity is small), the thin resistive patch resembles
a dielectric rather than a metal, and charges accumulate at the tip of the double-sided
wire-to-patch junction, which necessitates the ABCs derived in Section 2.2. This behavior
is consistent with the results shown in Fig. 10 (Section 3.1) for small values of σ2D, however,
it should be noted that the structure analyzed in that section has a single-sided wire-to-patch
junction. Since, the current distribution is nonuniform and the phase behavior is close to that
of the wire-medium slab case, the resonances of the absorber are indeed the perturbed HIS
resonances of the wire-medium slab.
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Figure 20. Three-layer mushroom-type HIS absorber with thin resistive patches. Structural parameters used in this work:

h1 = 2.7mm, h2 = h3 = 3.2mm, εr,1 = 3.2, εr,2 = 1.8, εr,3 = 1.33, r1 = r2 = r3 = 0.05mm, a1 = a2 = a3 = 5mm,
g1 = g2 = g3 = 0.1mm, Rs1 = 196 Ω, Rs2 = 588 Ω, Rs3 = 1176 Ω.
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Figure 21. Comparison of analytical (solid lines) and full-wave HFSS results (crosses, circles, and plus signs) of the reflection

coefficient for the three-layer HIS absorber excited by a TM-polarized plane wave at oblique angles of incidence θ: (a) with vias.

(b) without vias.

3.2.3. Three-layer mushroom HIS structure with thin resistive patches

Figure 20 shows a three-layered mushroom HIS absorber, which consists of three resistive
patch arrays separated by dielectric slabs perforated with metallic vias, and backed by a
ground plane. The parameters of the dielectric slabs together with the dimensions and sheet
resistivities of the square patches are given in the caption of Fig. 20. Figs. 21(a) and 21(b)
show the reflection magnitude curves for different incidence angles.
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Referring to Fig. 21(a), it can be observed that the analytical results obtained using the
nonlocal homogenization model described in Section 2.3 agree very well with the HFSS
results. As stated before, the absorption level increases for increasing angles of incidence
due to increase in the interaction with vias. By comparing Fig. 21(a) with Fig. 21(b) one can
clearly see significant improvements in the absorption bandwidth for the structure with vias
for increasing angles of incidence. For example, for θ = 60o, the 20 dB absorption bandwidth
of the structure with vias covering the frequency band from 9.93 GHz to 24.93 GHz shows
a 38 % increase in the bandwidth when comparing to the structure with no vias, having the
bandwidth from 9.01 GHz to 14.6 GHz. Also, it should be noted that the HFSS results shown
in Fig. 21(a) for θ = 45o and 60o have been obtained up to 30 GHz only (due to lack of
convergence at higher frequencies).

4. Conclusion

Generalized additional boundary conditions are derived for the interface of two uniaxial
wire media with thin resistive sheet at the junction. Based on these conditions a nonlocal
homogenization model has been proposed to characterize the reflection properties of the
multilayered mushroom HIS structures with thin resistive patches. The homogenization
model has been applied to four different structures and the results are validated using the
full-wave numerical simulations. An analytical design procedure for selecting resistivities
of the patch arrays has been presented. The prospect of using the multilayer mushroom
structures as absorbers has been studied. It has been shown that the presence of vias in
fact enhances the absorption band and increases the absorption level for increasing angles of
incidence for the obliquely incident TM-polarized plane wave.
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