3,862 research outputs found
Helix Formation and Folding in an Artificial Peptide
We study the relation between -helix formation and folding for a
simple artificial peptide, Ala-Gly-Ala. Our data rely on
multicanonical Monte Carlo simulations where the interactions among all atoms
are taken into account. The free-energy landscape of the peptide is evaluated
for various temperatures. Our data indicate that folding of this peptide is a
two-step process: in a first step two -helices are formed which
afterwards re-arrange themselves into a U-like structure.Comment: 15 pages, with 9 eps figure
Helix vs. Sheet Formation in a Small Peptide
Segments with the amino acid sequence EKAYLRT appear in natural occurring
proteins both in -helices and -sheets. For this reason, we have
use this peptide to study how secondary structure formation in proteins depends
on the local environment. Our data rely on multicanonical Monte Carlo
simulations where the interactions among all atoms are taken into account.
Results in gas phase are compared with that in an implicit solvent. We find
that both in gas phase and solvated EKAYLRT forms an -helix when not
interacting with other molecules. However, in the vicinity of a -strand,
the peptide forms a -strand. Because of this change in secondary
structure our peptide may provide a simple model for the
transition that is supposedly related to the outbreak of Prion diseases and
similar illnesses.Comment: to appear in Physical Review
Global Optimization by Energy Landscape Paving
We introduce a novel heuristic global optimization method, energy landscape
paving (ELP), which combines core ideas from energy surface deformation and
tabu search. In appropriate limits, ELP reduces to existing techniques. The
approach is very general and flexible and is illustrated here on two protein
folding problems. For these examples, the technique gives faster convergence to
the global minimum than previous approaches.Comment: to appear in Phys. Rev. Lett. (2002
Generalized Ensemble and Tempering Simulations: A Unified View
From the underlying Master equations we derive one-dimensional stochastic
processes that describe generalized ensemble simulations as well as tempering
(simulated and parallel) simulations. The representations obtained are either
in the form of a one-dimensional Fokker-Planck equation or a hopping process on
a one-dimensional chain. In particular, we discuss the conditions under which
these representations are valid approximate Markovian descriptions of the
random walk in order parameter or control parameter space. They allow a unified
discussion of the stationary distribution on, as well as of the stationary flow
across each space. We demonstrate that optimizing the flow is equivalent to
minimizing the first passage time for crossing the space, and discuss the
consequences of our results for optimizing simulations. Finally, we point out
the limitations of these representations under conditions of broken ergodicity.Comment: 11 pages Latex, 2 eps figures, revised version, typos corrected, PRE
in pres
The role of the spin in quasiparticle interference
Quasiparticle interference patterns measured by scanning tunneling microscopy
(STM) can be used to study the local electronic structure of metal surfaces and
high temperature superconductors. Here, we show that even in non-magnetic
systems the spin of the quasiparticles can have a profound effect on the
interference patterns. On Bi(110), where the surface state bands are not
spin-degenerate, the patterns are not related to the dispersion of the
electronic states in a simple way. In fact, the features which are expected for
the spin-independent situation are absent and the observed interference
patterns can only be interpreted by taking spin-conserving scattering events
into account.Comment: 4 pages, 2 figure
Multicanonical Study of the 3D Ising Spin Glass
We simulated the Edwards-Anderson Ising spin glass model in three dimensions
via the recently proposed multicanonical ensemble. Physical quantities such as
energy density, specific heat and entropy are evaluated at all temperatures. We
studied their finite size scaling, as well as the zero temperature limit to
explore the ground state properties.Comment: FSU-SCRI-92-121; 7 pages; sorry, no figures include
Partnership, ownership and control: the impact of corporate governance on employment relations
Prevailing patterns of dispersed share ownership and rules of corporate governance for UK listed companies appear to constrain the ability of managers to make credible, long-term commitments to employees of the kind needed to foster effective labour-management partnerships. We present case study evidence which suggests that such partnerships can nevertheless emerge where product market conditions and the regulatory environment favour a stakeholder orientation. Proactive and mature partnerships may also be sustained where the board takes a strategic approach to mediating between the claims of different stakeholder groups, institutional investors are prepared to take a long-term view of their holdings, and strong and independent trade unions are in a position to facilitate organisational change
Monte Carlo simulation and global optimization without parameters
We propose a new ensemble for Monte Carlo simulations, in which each state is
assigned a statistical weight , where is the number of states with
smaller or equal energy. This ensemble has robust ergodicity properties and
gives significant weight to the ground state, making it effective for hard
optimization problems. It can be used to find free energies at all temperatures
and picks up aspects of critical behaviour (if present) without any parameter
tuning. We test it on the travelling salesperson problem, the Edwards-Anderson
spin glass and the triangular antiferromagnet.Comment: 10 pages with 3 Postscript figures, to appear in Phys. Rev. Lett
Long Range Order at Low Temperature in Dipolar Spin Ice
Recently it has been suggested that long range magnetic dipolar interactions
are responsible for spin ice behavior in the Ising pyrochlore magnets and . We report here numerical
results on the low temperature properties of the dipolar spin ice model,
obtained via a new loop algorithm which greatly improves the dynamics at low
temperature. We recover the previously reported missing entropy in this model,
and find a first order transition to a long range ordered phase with zero total
magnetization at very low temperature. We discuss the relevance of these
results to and .Comment: New version of the manuscript. Now contains 3 POSTSCRIPT figures as
opposed to 2 figures. Manuscript contains a more detailed discussion of the
(i) nature of long-range ordered ground state, (ii) finite-size scaling
results of the 1st order transition into the ground state. Order of authors
has been changed. Resubmitted to Physical Review Letters Contact:
[email protected]
- …