6 research outputs found

    MICROSCOPE mission: first results of a space test of the equivalence principle

    Get PDF
    According to the weak equivalence principle, all bodies should fall at the same rate in a gravitational field. The MICROSCOPE satellite, launched in April 2016, aims to test its validity at the 10−15 precision level, by measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit. A nonvanishing result would correspond to a violation of the equivalence principle, or to the discovery of a new long-range force. Analysis of the first data gives ÎŽ(Ti,Pt)=[−1±9(stat)±9(syst)]×10−15 (1σ statistical uncertainty) for the titanium-platinum Eötvös parameter characterizing the relative difference in their free-fall accelerations

    Result of the MICROSCOPE weak equivalence principle test

    Get PDF
    International audienceThe space mission MICROSCOPE dedicated to the test of the equivalence principle (EP) operated from April 25, 2016 until the deactivation of the satellite on October 16, 2018. In this analysis we compare the free-fall accelerations (aA_{A} and aB_{B}) of two test masses in terms of the Eötvös parameter . No EP violation has been detected for two test masses, made from platinum and titanium alloys, in a sequence of 19 segments lasting from 13 to 198 h down to the limit of the statistical error which is smaller than 10−14^{−14} for η(Ti, Pt). Accumulating data from all segments leads to η(Ti, Pt) = [−1.5 ± 2.3 (stat) ± 1.5 (syst)] × 10−15^{−15} showing no EP violation at the level of 2.7 × 10−15^{−15} if we combine stochastic and systematic errors quadratically. This represents an improvement of almost two orders of magnitude with respect to the previous best such test performed by the Eöt-Wash group. The reliability of this limit has been verified by comparing the free falls of two test masses of the same composition (platinum) leading to a null Eötvös parameter with a statistical uncertainty of 1.1 × 10−15^{−15}
    corecore