13 research outputs found

    Author Correction: The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence (Nature Plants, (2022), 8, 5, (500-512), 10.1038/s41477-022-01146-6)

    Get PDF
    Correction to: Nature Plantshttps://doi.org/10.1038/s41477-022-01146-6, published online 9 May 2022. In the version of the article initially published, Dipak Khadka, who collected the samples in Nepal, was thanked in the Acknowledgements instead of being listed as an author. His name and affiliation (GoldenGate International College, Tribhuvan University, Battisputali, Kathmandu, Nepal) have been added to the authorship in the HTML and PDF versions of the article

    Dynamic Recrystallization and Hot-Working Characteristics of Ni-Based Alloy with Different Tungsten Content

    No full text
    The hot deformation behavior of the GY200 Ni-based alloys with different tungsten (W) content were investigated by means of hot compression tests, microscopic observations, and processing maps at temperatures between 950 °C and 1200 °C, strain rate between 0.01 s−1 and 10 s−1 with strain of 0.9. The hyperbolic-sine type constitutive equations were established between peaks tress and deformation conditions through Z parameters, and for alloys with higher W content results in higher activation energy and complete recrystallization temperature. The hot-working maps were exploited based on the experimental data. The hot-working maps showed that the instability zone extended with increasing W content. The stable domain of alloys are located in the temperature range between 1025 °C and 1200 °C and strain rate range between 0.01 s−1 and 1 s−1, dominated by the dynamic recrystallization (DRX) microstructural evolution, suited for hot deformation. The cracking on the surface of the sample compressed at 950 °C was resulted from the tensile stress, while the fracture of the sample compressed at 1200 °C was triggered by the melting of grain boundaries

    Optimization of Cab Vibration Comfort for Construction Machinery Based on Multi-Target Regression Forests

    No full text
    With the increasing awareness of the importance of environmental protection and the fierce competition in the construction machinery market, improving the vibration comfort of a whole construction machine has become a new focus of competition; therefore, optimizing the performance of cab mounts has become an urgent problem to be solved. At present, the problems of low modeling efficiency, serious technical difficulties, and long development cycles exist in the design and optimization of cab mounts. In this paper, a multi-target regression forests method is introduced into the design and optimization of the construction machinery installation system, which circumvents the traditional complex modeling process and establishes a mapping relationship between cab assembly parameters and the mounts’ stiffness, as well as introduces the system decoupling rate and vibration isolation rate as the boundary conditions. Furthermore, the MRFs method is compared and evaluated with MLRP and Multi-SVR prediction results. Finally, a complete, accurate, and efficient design method for the cab mount system optimization is developed, improving the decoupling rate and vibration isolation rate of the cab system. This design method can predict the stiffness of the mounts in multiple directions

    Interactive Geological Data Visualization in an Immersive Environment

    No full text
    Underground flow paths (UFP) often play an important role in the illustration of geological data by geologists, especially in illustrating geological data and revealing stratigraphic structures, which can help domain experts in their exploration of petroleum information. In this paper, we present a new immersive visualization tool to help domain experts better illustrate stratigraphic data. We use a visualization method based on bit-array-based 3-D texture to represent stratigraphic data. Our visualization tool has three major advantages: it allows for flexible interaction at the immersive device, it enables domain experts to obtain their desired UFP structure through the execution of quadratic surface queries, and supports different stratigraphic display modes, as well as switching and integration geological information flexibly. Feedback from domain experts has shown that our tool can contribute more for domain experts in the scientific exploration of stratigraphic data, compared to the existing UFP visualization tools in the field. Thus, experts in geology can have a more comprehensive understanding and more effective illustration of the structure and distribution of UFPs

    Interactive Geological Data Visualization in an Immersive Environment

    No full text
    Underground flow paths (UFP) often play an important role in the illustration of geological data by geologists, especially in illustrating geological data and revealing stratigraphic structures, which can help domain experts in their exploration of petroleum information. In this paper, we present a new immersive visualization tool to help domain experts better illustrate stratigraphic data. We use a visualization method based on bit-array-based 3-D texture to represent stratigraphic data. Our visualization tool has three major advantages: it allows for flexible interaction at the immersive device, it enables domain experts to obtain their desired UFP structure through the execution of quadratic surface queries, and supports different stratigraphic display modes, as well as switching and integration geological information flexibly. Feedback from domain experts has shown that our tool can contribute more for domain experts in the scientific exploration of stratigraphic data, compared to the existing UFP visualization tools in the field. Thus, experts in geology can have a more comprehensive understanding and more effective illustration of the structure and distribution of UFPs

    In-situ preparation of multi-layered sandwich-like CuCo2S4/rGO architectures as anode material for high-performance lithium and sodium ion batteries

    No full text
    To improve electron transfer and ion diffusion for lithium ion batteries (LIBs) and sodium ion batteries (SIBs), multi-layered sandwich-like CuCo2S4/rGO architectures (MS-CuCo2S4/rGO) are fabricated, in which the inserted CuCo2S4 spheres are anchored on the surface of rGO tightly due to strong chemical bonding. The MS-CuCo2S4/rGO architectures exhibit impressive electrochemical performance as anodes for both LIBs and SIBs. They show a high and stable capacities of 792 mAh g(-1) at 500 mA g(-1) after 1000 cycles for LIBs and 344.5 mAh g(-1) at 1000 mA g(-1) after 800 cycles for SIBs, which are 5 and 3.5 times that of pure CuCo2S4 for LIBs and SIBs, respectively. The electrochemical results show about 77.8% and 68.4% charge contribution from capacitive-controlled capacity for LIBs and SIBs, leading to excellent electrochemical performance. The in-situ XRD tests also prove that a conversion-type sodium storage mechanism is beneficial to high capacity. Additionally, the successfully paired Na3V2(PO4)(3)parallel to MS-CuCo2S4/rGO full sodium ion cell displays a reversible capacity of 225 mAh g(-1) at 500 mA g(-1) after 100 cycles. These results will shed light on the practical application of MS-CuCo2S4/rGO as high-performance electrode with long-term cycling stability for next generation LIBs and SIBs. (C) 2020 Elsevier B.V. All rights reserved
    corecore