17,209 research outputs found

    Atmospheric neutron measurements with the SONTRAC science model

    Get PDF
    –The SOlar Neutron TRACking (SONTRAC) telescope was originally developed to measure the energy spectrum and incident direction of neutrons produced in solar flares, in the energy range 20 - 250 MeV. While developed primarily for solar physics, the SONTRAC detector may be employed in virtually any application requiring both energy measurement and imaging capabilities. The SONTRAC Science Model (SM) is presently being operated at the University of New Hampshire (UNH) as a ground-based instrument to investigate the energy spectrum, zenith and azimuth angle dependence of the cosmic-ray induced sea-level atmospheric neutron flux. SONTRAC measurements are based on the non-relativistic double scatter of neutrons off ambient protons within a block of scintillating fibers. Using the n-p elastic double-scatter technique, it is possible to uniquely determine the neutron’s energy and direction on an event-by-event basis. The 3D SM consists of a cube of orthogonal plastic scintillating fiber layers with 5 cm sides, read out by two CCD cameras. Two orthogonal imaging chains allow full 3D reconstruction of scattered proton tracks

    The FIR-absorption of short period quantum wires and the transition from one to two dimensions

    Full text link
    We investigate the FIR-absorption of short period parallel quantum wires in a perpendicular quantizing magnetic field. The external time-dependent electric field is linearly polarized along the wire modulation. The mutual Coulomb interaction of the electrons is treated self-consistently in the ground state and in the absorption calculation within the Hartree approximation. We consider the effects of a metal gate grating coupler, with the same or with a different period as the wire modulation, on the absorption. The evolution of the magnetoplasmon in the nonlocal region where it is split into several Bernstein modes is discussed in the transition from: narrow to broad wires, and isolated to overlapping wires. We show that in the case of narrow and not strongly modulated wires the absorption can be directly correlated with the underlying electronic bandstructure.Comment: 15 pages, 9 figures, Revtex, to appear in Phys. Rev.

    Enhance the Efficiency of Heuristic Algorithm for Maximizing Modularity Q

    Full text link
    Modularity Q is an important function for identifying community structure in complex networks. In this paper, we prove that the modularity maximization problem is equivalent to a nonconvex quadratic programming problem. This result provide us a simple way to improve the efficiency of heuristic algorithms for maximizing modularity Q. Many numerical results demonstrate that it is very effective.Comment: 9 pages, 3 figure

    Theory of continuum percolation II. Mean field theory

    Full text link
    I use a previously introduced mapping between the continuum percolation model and the Potts fluid to derive a mean field theory of continuum percolation systems. This is done by introducing a new variational principle, the basis of which has to be taken, for now, as heuristic. The critical exponents obtained are β=1\beta= 1, γ=1\gamma= 1 and ν=0.5\nu = 0.5, which are identical with the mean field exponents of lattice percolation. The critical density in this approximation is \rho_c = 1/\ve where \ve = \int d \x \, p(\x) \{ \exp [- v(\x)/kT] - 1 \}. p(\x) is the binding probability of two particles separated by \x and v(\x) is their interaction potential.Comment: 25 pages, Late

    Modeling tumor cell migration: from microscopic to macroscopic

    Get PDF
    It has been shown experimentally that contact interactions may influence the migration of cancer cells. Previous works have modelized this thanks to stochastic, discrete models (cellular automata) at the cell level. However, for the study of the growth of real-size tumors with several millions of cells, it is best to use a macroscopic model having the form of a partial differential equation (PDE) for the density of cells. The difficulty is to predict the effect, at the macroscopic scale, of contact interactions that take place at the microscopic scale. To address this we use a multiscale approach: starting from a very simple, yet experimentally validated, microscopic model of migration with contact interactions, we derive a macroscopic model. We show that a diffusion equation arises, as is often postulated in the field of glioma modeling, but it is nonlinear because of the interactions. We give the explicit dependence of diffusivity on the cell density and on a parameter governing cell-cell interactions. We discuss in details the conditions of validity of the approximations used in the derivation and we compare analytic results from our PDE to numerical simulations and to some in vitro experiments. We notice that the family of microscopic models we started from includes as special cases some kinetically constrained models that were introduced for the study of the physics of glasses, supercooled liquids and jamming systems.Comment: Final published version; 14 pages, 7 figure

    A Novel Mechanism for Type-I Superconductivity in Neutron Stars

    Full text link
    We suggest a mechanism that may resolve a conflict raised by Link between the precession of a neutron star and the standard picture in which its core is composed of a mixture of a neutron superfluid and a type-II proton superconductor. We will show that if there is a persistent, non-dissipating current running along the magnetic flux tubes, the force between magnetic flux tubes may be attractive, resulting in a type-I, rather than a type-II, superconductor. If this is the case, the conflict between the observed precession and the canonical estimation of the Landau-Ginzburg parameter (which suggests type II behaviour) will be automatically resolved. Such a current arises in some condensed matter systems and may also appear in QCD dense matter as a consequence of quantum anomalies. We calculate the interaction between two vortices carrying a current j and find a constraint on the magnitude of j where a superconductor is always type-I, even when the cannonical Landau-Ginzburg parameter indicates type-II behaviour. If this condition is met, the magnetic field is expelled from the superconducting regions of the neutron star leading to the formation of the intermediate state where alternating domains of superconducting matter and normal matter coexist. We further argue that even when the induced current is small the vortex Abrikosov lattice will nevertheless be destroyed due to the helical instability studied previously in many condensed matter systems. This would also resolve the apparent contradiction with the precession of the neutron stars. We also discuss some instances where anomalous induced current may play a crucial role, such as the neutron star kicks, pulsar glitches and the toroidal magnetic field.Comment: 10 pages, Additional arguments are given supporting the idea that the Abrikosov lattice will be destroyed in regions where longitudinal currents are induce

    Pressure induced structural and dynamical changes in liquid Si. An ab-initio study

    Full text link
    The static and dynamic properties of liquid Si at high-pressure have been studied using the orbital free ab-initio molecular dynamics method. Four thermodynamic states at pressures 4, 8, 14 and 23 GPa are considered. The calculated static structure shows qualitative agreement with the available experimental data. We analize the remarkable structural changes occurring between 8 and 14 GPa along with its effect on several dynamic properties.Comment: 10 pages, 11 figures. Accepted for publication in Journal of Physics: Condensed Matte

    Numerical Solution of Hard-Core Mixtures

    Full text link
    We study the equilibrium phase diagram of binary mixtures of hard spheres as well as of parallel hard cubes. A superior cluster algorithm allows us to establish and to access the demixed phase for both systems and to investigate the subtle interplay between short-range depletion and long-range demixing.Comment: 4 pages, 2 figure
    corecore